Communications
5
573; c) R. O. Duthaler, Angew. Chem. 2003, 115, 1005; Angew.
Experimental Section
Chem. Int. Ed. 2003, 42, 975; d) P. I. Dalko, L. Moisan, Angew.
Chem. 2004, 116, 5248; Angew. Chem. Int. Ed. 2004, 43, 5138.
9] For organocatalytic Diels–Alder reactions, see a) A. B.
Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124,
Typical experimental procedure (Table 2, entry 2): Ketone 1b
(
(
2 mmol) was added to a vial containing aqueous formaldehyde
1 mmol, 36% aqueous solution), p-anisidine (1.1 mmol), and a
[
catalytic amount of (S)-proline (30 mol%) in DMSO (4 mL). After
vigorously stirring the mixture for 24 h at 508C, the reaction was
quenched by purifying the reaction mixture by column chromatog-
raphy on silica gel (EtOAc/pentane 1:5) to afford 2b in 72% yield as a
slightly yellow solid. The ee value of 2b was > 99% as determined by
2
458; b) K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am.
Chem. Soc. 2000, 122, 4243; c) D. B. Ramachary, N. S. Chowdari,
C. F. Barbas III, Angew. Chem. 2003, 115, 4365; Angew. Chem.
Int. Ed. 2003, 42, 4233.
1
[10] For reverse-electron-demand Diels–Alder reaction, see a) K.
Juhl, K. A. Jørgensen, Angew. Chem. 2003, 115, 1536; Angew.
Chem. Int. Ed. 2003, 42, 1498.
11] For hetero-Diels–Alder reactions, see a) Y. Huang, K. Unni,
A. N. Thadani, V. H. Rawal, Nature 2003, 424, 146; b) K. A.
Unni, N. Tanaka, H. Yamamoto, V. H. Rawal, J. Am. Chem. Soc.
HPLC analysis on a chiral stationary phase. H NMR (400 MHz,
CDCl ): d = 1.08 (s, 3H), 1.10 (s, 3H), 1.77 (d, J = 2.98 Hz, 2H), 2.47
3
(dd, J = 18.7, 3.4 Hz 1H), 2.62 (m, 1H), 2.68 (dd, J = 18.9, 2.3 Hz 1H),
[
3
2
3
2
.48, (d, J = 2.5 Hz, 2H), 3.75 (m, 1H), 3.76 (s, 3H), 6.61–6.63 (m,
H), 6.84–6.86 ppm (m, 2H); C NMR (100 MHz, CDCl ): d = 28.8,
0.2, 36.1, 38.9, 41.3, 46.0, 47.9, 56.1, 58.5, 112.1, 115.54, 141.1, 151.4,
1
3
3
2005, 127, 1336.
14.0 ppm; HPLC (Daicel Chiralpak AD, hexanes/iPrOH 99:1, flow
À1
[12] For nitroso-Diels–Alder reactions, see a) Y. Yamamoto, N.
Momiyama, H. Yamamoto, J. Am. Chem. Soc. 2004, 126, 5962;
b) Y. Hayashi, J. Yamaguchi, K. Hibino, T. Sumiya, T. Urushima,
M. Shoji, D. Hashizume, H. Koshino, Adv. Synth. Catal. 2004,
rate 1.2 mLmin , l = 254 nm): major isomer: t = 24.94 min; minor
R
isomer: t = 27.31 min; [a] = À71.8 (c = 1.7, CHCl ); MALDI-TOF
R
D
3
+
MS: 256.1689; C H NO [M+H] : calcd 261.1683.
1
6
22
2
3
46, 1435; c) H. SundØn, N. Dahlin, I. Ibrahem, H. Adolfsson, A.
Received: March 4, 2005
Published online: June 23, 2005
Córdova, Tetrahedron Lett. 2005, 46, 3385.
[
13] For 1,3-dipolar cycloadditions, see a) W. S. Jen, J. J. M. Wiener,
D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874; b) S.
Karlsson, H. Högberg, Tetrahedron: Asymmetry 2002, 13, 923;
for [4+3]cycloadditions, see c) M. Harmata, S. K. Ghosh, X.
Hong, S. Wacharasindhu, P. Kirchhoefer, J. Am. Chem. Soc.
Keywords: asymmetric catalysis · bicyclic amino acids ·
.
cycloaddition · enantioselectivity · ketones
2003, 125, 2058.
[
14] a) J. Casas, M. Engqvist, I. Ibrahem, B. Kaynak, A. Córdova,
[
1] For reviews, see a) K. A. Jørgensen, Angew. Chem. 2000, 112,
702; Angew. Chem. Int. Ed. 2000, 39, 3558; b) D. L. Boger, S. M.
Angew. Chem. 2005, 117, 1367; Angew. Chem. Int. Ed. 2005, 44,
1
Casas, J. Am. Chem. Soc. 2004, 126, 8914; c) H. SundØn, M.
Engqvist, J. Casas, I. Ibrahem, A. Córdova, Angew. Chem. 2004,
1
Acc. Chem. Res. 2004, 37, 102; e) A. Bøgevig, H, SundØn, A.
Córdova, Angew. Chem. 2004, 116, 1129; Angew. Chem. Int. Ed.
2
Johansson, F. Himo, Chem. Eur. J. 2004, 10, 3673; g) A. Córdova,
Chem. Eur. J. 2004, 10, 1987; h) A. Córdova, Synlett 2003, 1651,
and references therein.
3
343; b) A. Córdova, H. SundØn, M. Engqvist, I. Ibrahem, J.
Weinreb, Hetero Diels–Alder Methodology in Organic-Syntehsis,
Academic Press, San Diego. 1987, chap. 2; c) H. Waldmann,
Synlett 1995, 133; d) L. F. Tietze, G. Kettschau, Top. Curr. Chem.
16, 6694; Angew. Chem. Int. Ed. 2004, 43, 6532; d) A. Córdova,
1997, 190, 1; e) S. M. Weinreb, Top. Curr. Chem. 1997, 190, 131;
f) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069.
2] For examples of synthesis of complex compounds by an aza-
Diels–Alder reaction, see a) R. T. Bailey, R. S. Garigipati, J. A.
Morton, S. M. Weinreb, J. Am. Chem. Soc. 1984, 106, 3240; b) R.
Lock, H. Waldmann, Liebgs. Ann. Chem. 1994, 511; c) A. B.
Holmes, A. Kee, T. Ladduwahetty, D. F. Smith, J. Chem. Soc.
Chem. Commun. 1990, 1412.
3] For examples of diastereoselective aza-Diels–Alder reactions,
see a) J. Barluenga, F. Aznar, C. ValdØz, A. Martín, S. García-
Granada, E. Martín, J. Am. Chem. Soc. 1993, 115, 4403; b) A. S.
Timen, A. Ficher, P. Somfai, Chem. Commun. 2003, 1150; c) H.
Waldmann, M. Braun, M. Dräger, Angew. Chem. 1990, 102,
[
[
004, 43, 1109; f) A. Córdova, H. SundØn, A. Bøgevig, M.
[
15] This strategy has been used successfully in a direct catalytic one-
pot three-component Mannich reaction, see a) B. List, J. Am.
Chem. Soc. 2000, 122, 9336; b) B. List, P. Porjaliev, W. T. Biller,
H. J. Martin, J. Am. Chem. Soc. 2002, 124, 827; c) I. Ibrahem, J.
Casas, A. Córdova, Angew. Chem. 2004, 116, 6690; Angew.
Chem. Int. Ed. 2004, 43, 6528, and references therein.
16] The aza-Diels–Alder products decomposed and underwent a
retro-Michael reaction upon chromatography on silica gel, which
decreased the yield.
17] For the first use of catalyst 4, see a) A. J. A. Cobb, D. M. Shaw,
S. V. Ley, Synlett 2004, 558; b) H. Torii, M. Nakadai, K. Ishihara,
S. Saito, H. Yamamoto, Angew. Chem. 2004, 116, 2017; Angew.
Chem. Int. Ed. 2004, 43, 1983; c) A. Hartikaa, P. I. Arvidsson,
Tetrahedron: Asymmetry 2004, 15, 1831.
[
[
1445; Angew. Chem. Int. Ed. Engl. 1990, 29, 1468; d) S. D.
Larsen, P. A. Grieco, J. Am. Chem. Soc. 1985, 107, 1768.
4] Stoichiometric amounts of chiral boron complexes have also
been used to mediate enantiosalective aza-Diels–Alder reac-
tions, see a) K. Hattori, H. Yamamoto, J. Org. Chem. 1992, 57,
[
[
[
3264; b) K. Ishihara, M. Miyata, K. Hattori, T. Tada, H.
Yamamoto, J. Am. Chem. Soc. 1994, 116, 10520.
5] a) H. Ishitani, S. Kobayashi, Tetrahedron Lett. 1996, 37, 7357;
b) S. Kobayashi, S. Komiyama, H. Ishitani, Angew. Chem. 1998,
[
18] Arylsulfonylcarboxamides have been used in aldol reactions, see
a) A. Berkessel, B. Koch, J. Lex, Adv. Synth. Catal. 2004, 346,
1
10, 1026; Angew. Chem. Int. Ed. 1998, 37, 979; c) S. Kobayashi,
K. Kusakabe, S. Komiyama, H. Ishitani, J. Org. Chem. 1999, 64,
220.
1
141; for the use of catalyst 5, see reference [12c] and b) A. J. A.
Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold, S. V. Ley, Org.
Biomol. Chem. 2005, 3, 84.
4
6] a) S. Yao, M. Johannsen, R. G. Hazell, K. A. Jørgensen, Angew.
Chem. 1998, 110, 3318; Angew. Chem. Int. Ed. 1998, 37, 3121;
b) S. Yao, S. Saaby, R. G. Hazell, K. A. Jørgensen, Chem. Eur. J.
[
19] CCDC-265109 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
the Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif.
2000, 6, 2435.
[
7] see also: a) N. S. Josephsohn, M. L. Snapper, A. H. Hoveyda, J.
Am. Chem. Soc. 2003, 125, 4018; b) O. G. Mancheæo, R. G.
Arrayµs, J. C. Carretero, J. Am. Chem. Soc. 2004, 126, 456.
8] a) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840; Angew.
Chem. Int. Ed. 2001, 40, 3726; b) B. List, Tetrahedron 2002, 58,
[
4
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 4877 –4880