Communication
ChemComm
Table 3 Thioacid–azide reactions with 13 and 14 (20 mM, 10 eq. thioacetic acid (2))
Entry
Azide
Solvent system
Ratio (amide : thioamide)a
Conversiona [%]
Yieldb [%]
1
2
3
4
13
14
13
14
KCl/HCl buffer (100 mM, pH 2.0)
KCl/HCl buffer (100 mM, pH 2.0)
NH4OAc buffer (100 mM, pH 4.0), 30% DMF
NH4OAc buffer (100 mM, pH 4.0), 30% DMF
0.29 : 0.71
0.40 : 0.60
0.93 : 0.07
0.61 : 0.39
80
87
100
61
30 (16)
32 (18)
50 (15)
18 (17)
a
b
Determined by NMR integration. Main product.
2000, 2, 2141; (c) R. Kleineweischede and C. P. R. Hackenberger,
Angew. Chem., Int. Ed., 2008, 47, 5984.
6 For a review: J. W. Bode, Top. Organomet. Chem., 2013, 44, 13.
7 For a review: C. P. R. Hackenberger and D. Schwarzer, Angew. Chem.,
Int. Ed., 2008, 47, 10030.
8 (a) M. Mu¨hlberg, D. M. M. Jaradat, R. Kleineweischede, I. Papp,
D. Dechtrirat, S. Muth, M. Broncel and C. P. R. Hackenberger,
Bioorg. Med. Chem., 2010, 18, 3679; (b) S. Sowa, M. Mu¨hlberg,
K. M. Pietrusiewicz and C. P. R. Hackenberger, Bioorg. Med. Chem.,
2013, 21, 3465.
9 (a) G. H. Hakimelahi and G. Just, Tetrahedron Lett., 1980, 21, 2119;
(b) T. Rosen, I. M. Lico and D. T. W. Chu, J. Org. Chem., 1988,
53, 1580.
(Table 3, entries 3 and 4). One should note that the conversions in
entries 1–3 are excellent and that the drop in the isolated yield was
partially due to difficult separation of the two products by HPLC.
In summary, we have shown that at lower pH values the thioacid–
azide reaction with electron-rich and modestly electron-poor azides
proceeds with high conversion rates and without any additives. With
the exception of very basic amino acid side chains such as lysine, the
reaction is highly selective in the presence of other functional groups.
In addition, we observed an increased formation of thioamides at a
pH o 7. We could show that the thioamide/amide ratio can be
controlled by varying pH with an increase of up to 92% thioamide
conversion for an azido glycine peptide and 68% thioamide conver-
sion for a g-azido butanoic acid peptide at pH 2. As this effect seems
to be stronger for modestly electron-poor azides, such as azido
glycine peptide 9, it would be interesting to see if the employment
of highly electron-deficient azides, e.g., sulfonyl azides, might even
lead to complete thioamide formation under strong acidic condi-
tions. During the last few decades, thioamides have gained much
importance, e.g., as a new class of drugs,27 as amide isosteres in
peptides,28 and as quenching units in fluorescent proteins to study
conformational changes.29 A new strategy for their selective synthesis
might enrich the field of thioamide containing probes.
10 D. T. S. Rijkers, R. Merkx, C.-B. Yim, A. J. Brouwer and R. M. J.
Liskamp, J. Pept. Sci., 2010, 16, 1.
11 (a) N. Shangguan, S. Katukojvala, R. Greenberg and L. J. Williams,
J. Am. Chem. Soc., 2003, 125, 7754; (b) R. V. Kolakowski, N. Shangguan,
R. R. Sauers and L. J. Williams, J. Am. Chem. Soc., 2006, 128, 5695.
12 K. Rohmer, O. Keiper, J. Mannuthodikayil and V. Wittmann, Peptides
2010: tales of peptides; proceedings of the thirty-first European Peptide
Symposium, San Diego, Prompt Scientific Publ, 2010, p. 218.
13 X. Wu and L. Hu, Tetrahedron Lett., 2005, 46, 8401.
14 R. Merkx, M. J. van Haren, D. T. S. Rijkers and R. M. J. Liskamp,
J. Org. Chem., 2007, 72, 4574.
15 (a) R. Merkx, A. J. Brouwer, D. T. S. Rijkers and R. M. J. Liskamp,
Org. Lett., 2005, 7, 1125; (b) R. Raz and J. Rademann, Org. Lett., 2012,
14, 5038.
16 S. S. Kulkarni, X. Hu, K. Doi, H.-G. Wang and R. Manetsch,
ACS Chem. Biol., 2011, 6, 724.
17 X. Zhang, F. Li, X.-W. Lu and C.-F. Liu, Bioconjugate Chem., 2009,
20, 197.
18 F. Fazio and C.-H. Wong, Tetrahedron Lett., 2003, 44, 9083.
19 For a review: C. T. Walsh, S. Garneau-Tsodikova and G. J. Gatto Jr.,
Angew. Chem., Int. Ed., 2005, 44, 7342.
20 D. L. Hartl, D. Freifelder and L. A. Snyder, Basic Genetics, Jones and
Bartlett Publishers, Boston, 1988.
The authors acknowledge financial support from the DFG (SFB
765 and SPP 1623), the Fonds der Chemischen Industrie (FCI),
the Einstein Foundation, the Boehringer-Ingelheim Foundation
(Plus 3 award) and the Studienstiftung des deutschen Volkes. The
¨
authors thank Prof. Jorg Rademann for helpful discussions and
¨
21 M. Schnolzer and S. B. H. Kent, Science, 1992, 256, 221.
Maria Glanz for experimental contributions.
22 R. V. Kolakowski, N. Shangguan and L. J. Williams, Tetrahedron Lett.,
2006, 47, 1163.
23 (a) A. Lu, M. Ke, W. Ding and R. Liu, Chin. J. Chem., 2009, 27, 227;
(b) W. Gordy, J. Chem. Phys., 1946, 14, 560.
Notes and references
¨
1 For reviews: (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606; 24 R. Raz, PhD thesis, Freie Universitat Berlin, 2011.
(b) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
2 B. Shen, D. M. Makley and J. N. Johnston, Nature, 2010, 465, 1027.
25 E. Schaumann, Supplement A, in The Chemistry of double-bonded
functional groups, ed. S. Patai, Wiley, 1989.
3 A. Dumas, G. A. Molander and J. W. Bode, Angew. Chem., Int. Ed., 26 J. M. Goldberg, S. Batjargal and E. J. Petersson, J. Am. Chem. Soc.,
2012, 51, 5683. 2010, 132, 14718.
4 P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. Kent, Science, 1994, 27 (a) D. S. Copper, N. Engl. J. Med., 2005, 352, 905; (b) B. Srinivas and
266, 776. For a review: L. Raibaut, N. Ollivier and O. Melnyk, Chem.
Soc. Rev., 2012, 41, 7001.
R. D. Su¨ssmuth, ChemBioChem, 2010, 11, 1335.
28 A. Choudhary and R. T. Raines, ChemBioChem, 2011, 12, 1801.
5 (a) B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett., 2000, 29 S. Batjargal, Y. J. Wang, J. M. Goldberg, R. F. Wissner and E. J.
2, 1939; (b) E. Saxon, J. I. Armstrong and C. R. Bertozzi, Org. Lett., Petersson, J. Am. Chem. Soc., 2012, 134, 9172.
4606 | Chem. Commun., 2014, 50, 4603--4606
This journal is ©The Royal Society of Chemistry 2014