only slightly lower than those of (C6F5)3B?MeCN (2367 cm21 21
)
100, 1391–1434; (c) S. Yamaguchi, S. Akiyama and K. Tamao,
J. Organomet. Chem., 2002, 652, 3–9; (d) F. Ja¨kle, Boron:
Organoboranes, in Encyclopedia of Inorganic Chemistry, ed. R. B.
King, Wiley, Chichester, 2nd edn, 2005.
2 W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1–76.
3 G. Erker, Dalton Trans., 2005, 1883–1890.
and Br3B?MeCN (2362 cm21).22 Importantly, the band is
considerably shifted relative to the cocrystallized free MeCN
(2246 cm21). A new band at 727 cm21 is also observed, which
from comparison to that of Br3B?MeCN (715 cm21 22
)
is
4 For example: (a) W. E. Piers, G. J. Irvine and V. C. Williams, Eur. J.
Inorg. Chem., 2000, 2131–2142; (b) P. A. Chase, L. D. Henderson,
W. E. Piers, M. Parvez, W. Clegg and M. R. J. Elsegood,
Organometallics, 2006, 25, 349–357; (c) M. Melaimi and F. P. Gabba¨ı,
J. Am. Chem. Soc., 2005, 127, 9680–9681; (d) R. Boshra,
A. Sundararaman, L. N. Zakharov, C. D. Incarvito, A. L. Rheingold
and F. Ja¨kle, Chem.–Eur. J., 2005, 11, 2810–2824.
5 (a) R. Roesler, B. J. N. Har and W. E. Piers, Organometallics, 2002, 21,
4300–4302; (b) Y. Qin, G. Cheng, A. Sundararaman and F. Ja¨kle, J. Am.
Chem. Soc., 2002, 124, 12672–12673; (c) M. Schlo¨gl, S. Riethmueller,
C. Troll, M. Mo¨ller and B. Rieger, Macromolecules, 2004, 37, 4004–4007.
6 (a) M. Yasuda, S. Yoshioka, S. Yamasaki, T. Somyo, K. Chiba and
A. Baba, Org. Lett., 2006, 8, 761–764; (b) T. K. Wood, W. E. Piers, B.
A. Keay and M. Parvez, Org. Lett., 2006, 8, 2875–2878.
7 (a) J. J. Eisch and B. W. Kotowicz, Eur. J. Inorg. Chem., 1998, 761–769;
(b) P. A. Chase, W. E. Piers and B. O. Patrick, J. Am. Chem. Soc., 2000,
122, 12911–12912; (c) M. V. Metz, D. J. Schwartz, C. L. Stern, P. N.
Nickias and T. J. Marks, Angew. Chem., Int. Ed., 2000, 39, 1312–1316.
8 C.-W. Chiu and F. P. Gabba¨ı, J. Am. Chem. Soc., 2006, 128,
14248–14249.
tentatively assigned to the B–N stretch.
In conclusion, oxidation of one of the iron centers in dibora-
diferrocene (1) leads to a mixed-valent species that, depending on
the counterion, is valence delocalized or trapped in the solid state.
The structural features of valence trapped 1+PF6 provide direct
evidence that a ferricenyl group acts as a strongly electron-
withdrawing substituent on boron. The enhanced Lewis acidity is
further reflected in the facile binding of MeCN, with formation of
the dioxidized species 22+, which shows spectroscopic and crystal-
lographic features that are consistent with strong Lewis acid–base
interactions. Further studies on the use of oxidized diboradiferro-
cenes as anion sensors and Lewis acid catalysts are in progress.
Acknowledgement is made to the donors of the Petroleum
Research Fund, administered by the American Chemical Society,
for support of this research. FJ thanks the Alfred P. Sloan
Foundation for a research fellowship and the National Science
Foundation for a CAREER award. Funding for an X-ray
diffractometer was provided by NSF (CRIF 0443538). We are
grateful to Prof. Mendelsohn, Dr Carol Flach and Guojin Zhang
for acquisition of IR data of compound 22+(I3)2 and to Prof.
Lalancette and A. Doshi for helpful discussions.
9 T. Agou, J. Kobayashi and T. Kawashima, Inorg. Chem., 2006, 45,
9137–9144.
10 The reversible oxidation of ferrocenylboronates has been exploited for
the sensing of fluoride. See, for example: (a) C. Dusemund, K. R. A. S.
Sandanayake and S. Shinkai, J. Chem. Soc., Chem. Commun., 1995,
333–334; (b) S. Aldridge, C. Bresner, I. A. Fallis, S. J. Coles and
M. B. Hursthouse, Chem. Commun., 2002, 740–741; (c) C. Bresner,
S. Aldridge, I. A. Fallis, C. Jones and L.-L. Ooi, Angew. Chem., Int. Ed.,
2005, 44, 3606–3609. Notably, in the case of other acyclic ferrocene-
based triarylboranes, oxidation of ferrocene was reported to be an
irreversible process (see citations in ref. 18).
Notes and references
{ Oxidation of 1 with AgPF6: to a solution of 1 (100 mg, 0.184 mmol) in
CH2Cl2 (6 mL) was added AgPF6 (46.4 mg, 0.184 mmol) in CH2Cl2 (3 mL)
at 235 uC. The mixture was stirred at RT for 10 min, filtered, and the
solvent removed under vacuum to give a crystalline brown solid. Yield:
111 mg (70%). X-Ray quality crystals were grown from a mixture of CHCl3
11 K. Venkatasubbaiah, L. N. Zakharov, W. S. Kassel, A. L. Rheingold
and F. Ja¨kle, Angew. Chem., Int. Ed., 2005, 44, 5428–5433.
12 Details of the Mo¨ssbauer studies will be reported elsewhere.
13 M.B.RobinandP.Day,Adv.Inorg.Chem.Radiochem.,1967,10,247–422.
14 The corresponding mixed-valent silicon-bridged diferrocene
[Cp2Fe2(m-C5H3SiMe2)2]+ does not show any detectable IVCT bands
in the NIR region. See: (a) H. Atzkern, J. Hiermeier, F. H. Ko¨hler and
A. Steck, J. Organomet. Chem., 1991, 408, 281–296; (b) U. Siemeling,
P. Jutzi, E. Bill and A. X. Trautwein, J. Organomet. Chem., 1993, 463,
151–154; (c) J. Kreisz, R. U. Kirss and W. M. Reiff, Inorg. Chem., 1994,
33, 1562–1565; (d) F. H. Ko¨hler, A. Schell and B. Weber, J. Organomet.
Chem., 1999, 575, 33–38.
15 The zwitterion ferricenyl(III)tris(ferrocenyl(II))borate has been reported
to be valence trapped and shows similar structural features:
D. O. Cowan, P. Shu, F. L. Hedberg, M. Rossi and T. J.
Kistenmacher, J. Am. Chem. Soc., 1979, 101, 1304–1306.
16 For example: (a)R.J.Webb,S.J.Geib,D.L.Staley,A.L.Rheingoldand
D. N. Hendrickson, J. Am. Chem. Soc., 1990, 112, 5031–5042; (b) T. Oda,
S. Nakashima and T. Okuda, Inorg. Chem., 2003, 42, 5376–5383.
17 M. Scheibitz, M. Bolte, J. W. Bats, H.-W. Lerner, I. Nowik, R. H.
Herber, A. Krapp, M. Lein, M. C. Holthausen and M. Wagner, Chem.–
Eur. J., 2005, 11, 584–603 and references therein.
1
and hexanes at 235 uC. H NMR (500 MHz, CDCl3, 25 uC) d 21.1 (br,
10H, free-Cp), 19.4 (br, 2H, Cp-4), 15.2 (br, 4H, Cp-3,5), 5.31 (CH2Cl2),
3.78, 3.25, 2.92 (br, 10H, Ph). 11B NMR (160 MHz, CD2Cl2, 25 uC) d 49.7
(w1/2 = 1600 Hz). UV-Vis (CH2Cl2, 2.60 6 1023 M): lmax = 1543 nm (e =
330 M21 cm21). Calcd for C32H26B2Fe2PF6?2CH2Cl2: C 47.56, H 3.52;
found C 48.20, H 3.74%.
Binding of acetonitrile to 1+I5: synthesis of 22+(I3)2: MeCN (5 mL) was
added to 1+I5 (34.3 mg, 29.1 mmol) at RT and the mixture stirred for
30 min. The color of the solution turned green with a red precipitate that
was identified as 1 from 1H NMR data (yield: 2.3 mg, 87%). The solution
was filtered, the volume reduced to 2 mL, and the mixture kept for
crystallization at 235 uC. Yield 22+(I3)2(MeCN)2: 31.4 mg (88%). X-Ray
quality crystals were grown by recrystallization from MeCN at 235 uC. 1H
NMR (500 MHz, CD3CN, 25 uC) d 32.5 (br, Cp), 5.42, 4.71, 23.32 (br,
Ph), 1.94 (MeCN). 11B NMR (160 MHz, CD3CN, 25 uC) d 20.2 (w1/2
=
640 Hz). UV-Vis (MeCN, 3.29 6 1024 M): lmax (nm) = 553 (e =
760 M21 cm21), 644 (e = 920 M21 cm21). IR (KBr): n (cm21) = 2345 (CN,
bound MeCN), 2246 (CN, free MeCN), 727 (B–N). Calcd for
C36H32B2Fe2I6N2?2MeCN: C 32.69, H 2.61, N 3.81; found C 32.46, H
2.27, N 3.62%.
18 FcB(C6F5)2 does not significantly bind MeCN, but 1,19-Fc(B(C6F5)2)2
has been reported to bind MeCN even at ambient temperature: (a)
B. E. Carpenter, W. E. Piers, M. Parvez, G. P. A. Yap and S. J. Rettig,
Can. J. Chem., 2001, 79, 857–867; (b) B. E. Carpenter, W. E. Piers and
R. McDonald, Can. J. Chem., 2001, 79, 291–295.
§ Crystallographic data: 1+PF6?2CHCl3, CCDC 635884:
C34H28B2Cl6F6Fe2P, M = 927.55, T = 100(2) K, monoclinic, P21/c, a =
18.5711(3), b = 25.9704(4), c = 15.3244(3) s, b = 100.0530(10)u, V =
7277.5(2) s3, Z = 8, m = 11.374 mm21, Rint = 0.0493, R1 = 0.0513,
19 Note that the excess iodine in the precursor 1+I5 serves to reoxidize the
neutral complex 1, thus resulting in an overall reaction stoichiometry of 6
1+I5 +10MeCNA522+(I3)2 +1. Removal of solid 1from the equilibrium
promotes disproportionation and nucleophile binding facilitates the
oxidation process as evident from considerably lower oxidation potentials
in the cyclic voltammogram of 1 in coordinating solvents.
20 C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A.
Friesner and G. Parkin, J. Am. Chem. Soc., 2000, 122, 10581–10590.
21 H. Jacobsen, H. Berke, S. Do¨ring, G. Kehr, G. Erker, R. Fro¨hlich and
O. Meyer, Organometallics, 1999, 18, 1724–1735.
wR2
= 0.1220 (I . 2s(I)). 2
2+(I3)2?2MeCN, CCDC 635885:
C40H38B2Fe2I6N4, M = 1469.46, T = 100(2) K, monoclinic, P21/c, a =
11.7183(9), b = 8.9579(7), c = 21.3539(15) s, b = 92.612(4)u, V =
2239.2(3) s3, Z = 2, m = 37.924 mm21, Rint = 0.0353, R1 = 0.0455,
wR2 = 0.1172 (I . 2s(I)). For crystallographic data in CIF or other
electronic format, see DOI: 10.1039/b701807j
1 (a) E. H. Yamamoto, Lewis Acids in Organic Synthesis, Wiley-VCH,
New York, 2000; (b) E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000,
22 D. F. Shriver and B. Swanson, Inorg. Chem., 1971, 10, 1354–1365.
2156 | Chem. Commun., 2007, 2154–2156
This journal is ß The Royal Society of Chemistry 2007