C O M M U N I C A T I O N S
anionic polyelectrolyte boronates at high pH. On the other hand,
the polymeric ester precursors were insoluble under these condi-
tions, and thus the change in solubility serves as further evidence
of successful deprotection to the free boronic acid moieties. For
the block copolymers with PDMA, deprotection was sufficiently
mild to proceed without degradation of the acrylamido units.
This facile route leads to well-defined polymeric boronic acids
via RAFT polymerization of their stable pinacol esters. This is the
first example of boronic acid/ester block copolymers being prepared
by RAFT polymerization and the first time a block copolymer
containing organoboron and acrylamido segments has been prepared
by any polymerization method. The self-assembly potential of
organoboron amphiphilic copolymers was demonstrated by forma-
tion of polymeric micelles of PpBSt-b-PDMA in water. The
versatility of acrylamido polymers in applications requiring water-
solubility or stimuli-responsive behavior, combined with the
anticipated biological and catalytic utility of controlled architecture
boron-containing polymers, suggests significant promise in the
development of synthetic strategies toward water-soluble boronic
acid-containing macromolecules. Future studies will investigate the
responsive behavior of boronic acid block copolymers as a function
of specific small molecule organics.
Figure 1. (A) Pseudo-first-order kinetic plot and (B) Mn versus conversion
for RAFT polymerization of 4-pinacolatoborylstyrene (pBSt) with various
ratios of monomer (Mon), chain transfer agent (CTA), initiator (Init); (C)
GPC traces for a PpBSt homopolymer and block copolymer with poly-
(N,N-dimethylacrylamide) (PDMA); (D) hydrodynamic diameter distribution
for PpBSt145-b-PDMA273 in water.
Acknowledgment. Acknowledgment is made to SMU, the
Donors of the American Chemical Society Petroleum Research
Fund (Grant 45286-G7), Oak Ridge Associated Universities (Ralph
E. Powe Junior Faculty Enhancement Award), and the Defense
Advanced Research Projects Agency (Grant HR0011-06-1-0032)
for partial support of this research.
Table 1. Results from Synthesis of Poly(4-pinacolatoborylstyrene)
(PpBSt) and PpBSt-b-Poly(N,N-dimethylacrylamide) (PDMA)
c
time
min
conversionb
%
Mn
c
polymer
[M]/[CTA]/[I]a
g/mol
Mw/Mn
PpBSt
[100]/[1]/[0.15] 518
[100]/[1]/[0.20] 420
[200]/[1]/[0.30] 420
[100]/[1]/[0.40] 360
74
70
68
79
99
99
16 900
16 300
32 400
17 200
36 600
60 800
1.16
1.13
1.11
1.15
1.08
1.09
PpBSt
PpBSt
PpBSt
Supporting Information Available: Detailed experimental and
analytical details, and additional GPC traces. This material is available
PpBSt-b-PDMA [150]/[1]/[0.40] 360
PpBSt-b-PDMA [250]/[1]/[0.40] 300
a Stoichiometric ratio of monomer/chain transfer agent/initiator. b De-
References
1
termined by H NMR spectroscopy. c Determined by GPC.
(1) For, an excellent review see: Ja¨kle, F. J. Inorg. Organomet. Polym. Mater.
2005, 15, 293.
(2) Zhang, Y.; Guan, Y.; Zhou, S. Biomacromolecules 2006, 7, 3196. Hall,
D. G. Boronic Acids: Preparation and Applications in Organic Synthesis
and Medicine; Wiley: Weinheim, Germany, 2005. James, T. D.; Shinkai,
S. Top. Curr. Chem. 2002, 218, 159.
(3) Letsinger, R. L.; Hamilton, S. B. J. Am. Chem. Soc. 1959, 81, 3009.
Lennarz, W. J.; Snyder, H. R. J. Am. Chem. Soc. 1960, 82, 2169. Pellon,
J.; Schwind, L. H.; Guinard, M. J.; Thomas, W. M. J. Polym. Sci. 1961,
55, 161. Pellon, J.; Deichert, W. G.; Thomas, W. M. J. Polym. Sci. 1961,
55, 153.
(4) Matyjaszewski, K.; Davis, T. Handbook of Radical Polymerization; Wiley-
Interscience: Hoboken, NJ, 2002.
(5) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614. Kato,
M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules
1995, 28, 1721.
(6) Yang, Q.; Guanglou, C.; Anand, S.; Ja¨kle, F. J. Am. Chem. Soc. 2002,
124, 12672. Qin, Y.; Cheng, G.; Achara, O.; Parab, K.; Ja¨kle, F.
Macromolecules 2004, 37, 7123.
Figure 2. 1H NMR spectra for (A) poly(4-pinacolatoborylstyrene) (CDCl3)
and (B) deprotected poly(4-vinylphenylboronic acid) (D2O/NaOD).
free boronic acid significantly complicates purification and separa-
tion. This problem was conveniently avoided by transesterification
of the PpBSt units in acetonitrile/2% trifluoroacetic acid with excess
boronic acid immobilized on an insoluble support.11 Purification
was greatly simplified, and the efficiency of pinacol removal was
(7) Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Ja¨kle, F. Macromolecules 2005,
38, 8987.
(8) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.;
Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.;
Thang, S. H. Macromolecules 1998, 31, 5559.
(9) Lowe, A. B.; McCormick, C. L. Prog. Polym. Sci. 2007, 32, 283.
McCormick, C. L.; Lowe, A. B. Acc. Chem. Res. 2004, 37, 312.
(10) Kataoka, K.; Miyazaki, H.; Okano, T.; Sakurai, Y. Macromolecules 1994,
27, 1061. Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y.
J. Am. Chem. Soc. 1998, 120, 12694.
1
essentially quantitative, as determined via H NMR spectroscopy
by the disappearance of the pinacol ester methyl protons of the
PpBSt units (δ ) 1.23 pm) (Figure 2). Conversion to boronic acid
functionality was sufficient to induce solubility of the PpBSt in
basic aqueous media, as expected because of the formation of
(11) Pennington, T. E.; Kardiman, C.; Hutton, C. A. Tetrahedron Lett. 2004,
45, 6657. Farrall, M. J.; Fre´chet, J. M. J. J. Org. Chem. 1976, 41, 3877.
JA074239S
9
J. AM. CHEM. SOC. VOL. 129, NO. 34, 2007 10349