Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) H.-B. Cheng, Y. Cui, R. Wang, N. Kwon and J. Yoon, Coord. Chem.
Rev., 2019, 392, 237–254; (b) S. S. Lucky, K. C. Soo and Y. Zhang, Chem.
Rev., 2015, 115, 1990–2042; (c) S. Monro, K. L. Colon, H. Yin, J. Roque,
P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron and
S. A. McFarland, Chem. Rev., 2019, 119, 797–828; (d) A. P. Castano,
P. Mroz and M. R. Hamblin, Nat. Rev. Cancer, 2006, 6, 535–545;
(e) K. K. Ng and G. Zheng, Chem. Rev., 2015, 115, 11012–11042.
2 (a) L. Cheng, C. Wang, L. Feng, K. Yang and Z. Liu, Chem. Rev., 2014,
114, 10869–10939; (b) X. Li, D. Lee, J.-D. Huang and J. Yoon, Angew.
Chem., 2018, 130, 10033–10038; (c) X. S. Li, S. Kolemen, J. Yoon and
E. U. Akkaya, Adv. Funct. Mater., 2017, 27, 1604053; (d) H. Yuan,
B. Wang, F. Lv, L. Liu and S. Wang, Adv. Mater., 2014, 26, 6978–6982.
3 (a) W. Fan, P. Huang and X. Chen, Chem. Soc. Rev., 2016, 45,
6488–6519; (b) V. Shanmugam, S. Selvakumar and C. S. Yeh, Chem.
Soc. Rev., 2014, 43, 6254–6287.
Fig. 5 Controlled photodynamic antibacterial effects. Photographs of
plates containing S. aureus on LB agar treated with Azo 1, NanoAzoPcS
(ZnPcs/azo 1 = 5 mM/35 mM) and locking/unlocking NanoAzoPcS (ZnPcs/
azo 1 = 5 mM/35 mM) under laser irradiation. Control groups are untreated
bacteria. Laser conditions: 655 nm, 0.4 W cmÀ2, 10 min.
4 (a) V. Almeida-Marrero, E. van de Winckel, E. Anaya-Plaza, T. Torres
and A. de la Escosura, Chem. Soc. Rev., 2018, 47, 7369; (b) X. Li,
B.-D. Zheng, X.-H. Peng, S.-Z. Li, J.-W. Ying, Y. Zhao, J.-D. Huang and
J. Yoon, Coord. Chem. Rev., 2019, 379, 147.
5 (a) H.-B. Cheng, Y.-M. Zhang, Y. Liu and J. Yoon, Chem, 2019, 5, 553;
(b) J. Wang, K. Liu, R. Xing and X. Yan, Chem. Soc. Rev., 2016,
45, 5589; (c) L. Yang, X. Tan, Z. Wang and X. Zhang, Chem. Rev.,
2015, 115, 7196; (d) G. Yu, B. C. Yung, Z. Zhou, Z. Mao and X. Chen,
ACS Nano, 2018, 12, 7; (e) J. Zhou, G. Yu and F. Huang, Chem. Soc.
Rev., 2017, 46, 7021.
6 (a) H. Cheng, J. Yoon and H. Tian, Coord. Chem. Rev., 2018, 372, 66;
(b) H.-B. Cheng, H.-Y. Zhang and Y. Liu, J. Am. Chem. Soc., 2013,
135, 10190; (c) Y. Liu, P. Bhattarai, Z. Dai and X. Chen, Chem. Soc.
Rev., 2019, 48, 2053.
7 (a) H. B. Cheng, Z. Sun, N. Kwon, R. Wang, Y. Cui, C. O. Park and
J. Yoon, Chem. – Eur. J., 2019, 3501; (b) A. S. Weingarten, R. V. Kazantsev,
L. C. Palmer, M. McClendon, A. R. Koltonow, A. P. S. Samuel,
D. J. Kiebala, M. R. Wasielewski and S. I. Stupp, Nat. Chem., 2014,
6, 964; (c) S. Yagai, S. Okamura, Y. Nakano, M. Yamauchi, K. Kishikawa,
T. Karatsu, A. Kitamura, A. Ueno, D. Kuzuhara, H. Yamada, T. Seki and
H. Ito, Nat. Commun., 2014, 5, 4013.
for 12 h in the dark. Inspection of the images in Fig. 5 shows that the
Azo 1 and NanoAzoPcS do not promote inhibition of bacterial
growth both in the absence and presence of 655 nm laser irradiation.
However, unlocking NanoAzoPcS (ZnPcs/azo 1 = 5 mM/35 mM) does
have inhibitory effects on the growth of 655 nm laser irradiated
E. coli and S. aureus cells (Fig. 5 and Fig. S15, ESI‡). Moreover, as can
be seen by viewing Fig. S16 (ESI‡), the antibacterial activity of
unlocked NanoAzoPcS (ZnPcs/azo 1 = 5 mM/35 mM) is concentration
dependent in the tested range of 100–1000 nM. The number of
colony forming units (CFUs) was used to determine the numbers of
live S. aureus bacterial cells. Inspection of Fig. S16 (ESI‡) shows that
‘‘double-lock’’ NanoAzoPcS has antibacterial effects on S. aureus in
the range of 100–1000 nM.
In summary, in this effort we synthesized a nanostructured PS
by co-assembling a phthalocyanine derivative and an azobenzene
amphiphile. We showed that the activity of the nanostructured PS
can be controlled by varying the stoichiometric ratios of the
8 S. Cheung and D. F. O’Shea, Nat. Commun., 2017, 8, 1885.
9 R. C. H. Wong, P. C. Lo and D. K. P. Ng, Coord. Chem. Rev., 2019, 379, 30.
components and using isomerization of azobenzene. The novel 10 (a) D. K. Ng and J. Jiang, Chem. Soc. Rev., 1997, 26, 433;
(b) R. C. H. Wong, S. Y. S. Chow, S. Zhao, W. P. Fong, D. K. P. Ng
and P. C. Lo, ACS Appl. Mater. Interfaces, 2017, 9, 23487.
11 X. Li, S. Yu, Y. Lee, T. Guo, N. Kwon, D. Lee, S. C. Yeom, Y. Cho,
self-assembled phthalocyanine-azobenzene containing nanoPS
effectively promotes the death of red light irradiated bacteria cells.
Thus, combining the photosensitizer ZnPcS with the photochromic
switchable azo 1 component leads to the formation of a PS system
that exists in an ‘‘off’’ state and that can be transformed to active
G. Kim, J. D. Huang, S. Choi, K. T. Nam and J. Yoon, J. Am. Chem.
Soc., 2019, 141, 1366.
12 F. Xiao, B. Cao, C. Wang, X. Guo, M. Li, D. Xing and X. Hu, ACS
Nano, 2019, 13, 1511.
state for ‘‘double-lock’’ PDT. The host–guest nanosystem developed 13 (a) M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski and
B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55, 10978; (b) M.
Wegener, M. J. Hansen, A. J. M. Driessen, W. Szymanski and
B. L. Feringa, J. Am. Chem. Soc., 2017, 139, 17979.
in this effort should serve as a model to guide the design of general
photoactivatable based strategies to overcome current limitations
of PDT.
J. Y. is thankful for financial support from the National
Research Foundation of Korea (NRF), which is funded by the
Korea government (MSIP) (No. 2012R1A3A2048814).
14 E. C. Carroll, S. Berlin, J. Levitz, M. A. Kienzler, Z. Yuan, D. Madsen,
D. S. Larsen and E. Y. Isacoff, Proc. Natl. Acad. Sci. U. S. A., 2015,
112, E776.
15 H.-B. Cheng, Y.-M. Zhang, C. Xu and Y. Liu, Sci. Rep., 2014, 4, 4210.
16 A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 12316--12319 | 12319