ACS Catalysis
Page 6 of 9
Lett. 1981, 10, 531–534. (b) Wotal, A. C.; Weix, D. J. Synthesis of
Science 2016, 354, 300. (f) Eberhardt, N. A.; Guan, H. Nickel
Hydride Complexes. Chem. Rev. 2016, 116, 8373–8426.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Functionalized Dialkyl Ketones from Carboxylic Acid Derivatives
and Alkyl Halides. Org. Lett. 2012, 14, 1476–1479. (c) Wu, F.; Lu,
W.; Qian, Q.; Ren, Q.; Gong, H. Ketone Formation via Mild
Nickel-Catalyzed Reductive Coupling of Alkyl Halides with Aryl
Acid Chlorides. Org. Lett. 2012, 14, 3044–3047. (d) Yin, H.; Zhao,
C.; You, H.; Lin, Q.; Gong, H. Mild Ketone Formation via Ni-
Catalyzed Reductive Coupling of Unactivated Alkyl Halides with
Acid Anhydrides. Chem. Commun. 2012, 48, 7034–7036. (e) Lu,
W.; Liang, Z.; Zhang, Y.; Wu, F.; Qian, Q.; Gong, H. Gram-Scale
Ketone Synthesis by Direct Reductive Coupling of Alkyl Iodides
with Acid Chlorides. Synthesis 2013, 45, 2234–2240. (f) Zhao, C.;
Jia, X.; Wang, X.; Gong, H. Ni-Catalyzed Reductive Coupling of
Alkyl Acids with Unactivated Tertiary Alkyl and Glycosyl Halides.
J. Am. Chem. Soc. 2014, 136, 17645–17651. (g) Cherney, A. H.;
Kadunce, N. T.; Reisman, S. E. Catalytic Asymmetric Reductive
Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α-
Disubstituted Ketones. J. Am. Chem. Soc. 2013, 135, 7442–7445.
(7) For reviews on remote functionalization through alkene
isomerization, see: (a) Larionov, E.; Li, H.; Mazet, C. Well-Defined
Transition Metal Hydrides in Catalytic Isomerizations. Chem.
Commun. 2014, 50, 9816–9826. (b) Vasseur, A.; Bruffaerts, J.;
Marek, I. Remote Functionalization through Alkene
Isomerization. Nat. Chem. 2016, 8, 209–219. (c) Sommer, H.;
Juliá-Hernández, F.; Martin, R.; Marek, I. Walking Metals for
Remote Functionalization. ACS Cent. Sci. 2018, 4, 153–165.
(8) For recent Rh-catalyzed chainwalking, see: (a) Yoshida, K.;
Hayashi, T. A New cine-Substitution of Alkenyl Sulfones with
Aryltitanium Reagents Catalyzed by Rhodium: Mechanistic
Studies and Catalytic Asymmetric Synthesis of Allylarenes. J.
Am. Chem. Soc. 2003, 125, 2872–2873. (b) Tsui, G. C.; Lautens,
M. Linear-Selective Rhodium(I)-Catalyzed Addition of
Arylboronic Acids to Allyl Sulfones. Angew. Chem., Int. Ed. 2010,
49, 8938–8941. (c) Ryu, J.; Cho, S. H.; Chang, S. A Versatile
Rhodium(I) Catalyst System for the Addition of Heteroarenes to
both Alkenes and Alkynes by a C–H Bond Activation. Angew.
Chem., Int. Ed. 2012, 51, 3677–3681. (d) Filloux, C. M.; Rovis, T.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
h) Wotal, A. C.; Ribson, R. D.; Weix, D. J. Stoichiometric
Reactions of Acylnickel(II) Complexes with Electrophiles and the
Catalytic Synthesis of Ketones. Organometallics 2014, 33, 5874–
5881. For the palladium-catalyzed reductive acyl cross-coupling,
see: (i) Sato, T.; Naruse, K.; Enokiya, M.; Fujisawa, T. Facile
Synthesis of Benzyl Ketones by the Reductive Coupling of
Benzyl Bromide and Acyl Chlorides in the Presence of a
Palladium Catalyst and Zinc Powder. Chem. Lett. 1981, 10,
Rh(I)–Bisphosphine-Catalyzed
Asymmetric,
Intermolecular
Hydroheteroarylation of α-Substituted Acrylate Derivatives. J.
Am. Chem. Soc. 2015, 137, 508–517. (e) Martínez, J. I.; Smith, J.
J.; Hepburn, H. B.; Lam, H. W. Chain Walking of Allylrhodium
Species Towards Esters During Rhodium-Catalyzed Nucleophilic
Allylations of Imines. Angew. Chem., Int. Ed. 2016, 55, 1108–
1112. (f) Borah, A. J.; Shi, Z. Rhodium-Catalyzed, Remote
Terminal Hydroarylation of Activated Olefins through a Long-
Range Deconjugative Isomerization. J. Am. Chem. Soc. 2018,
140, 6062–6066.
1
135–1138.
4) For selected reviews on alkyl halides in cross-coupling,
see: (a) Netherton, M. R.; Fu, G. C. Nickel-Catalyzed
Cross-Couplings of Unactivated Alkyl Halides and
(
Pseudohalides with Organometallic Compounds. Adv. Synth.
Catal. 2004, 346, 1525–1532. (b) Frisch, A. C.; Beller, M. Catalysts
for Cross-Coupling Reactions with Non-activated Alkyl Halides.
Angew. Chem., Int. Ed. 2005, 44, 674–688. (c) A. Rudolph, A.;
(9) For recent Pd-catalyzed chainwalking, see: (a) Werner, E.
W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Enantioselective Heck
Arylations of Acyclic Alkenyl Alcohols Using a Redox-Relay
Strategy. Science 2012, 338, 1455–1458. (b) Aspin, S.; Goutierre,
A.-S.; Larini, P.; Jazzar, R.; Baudoin, O. Synthesis of Aromatic α‐
Aminoesters: Palladium-Catalyzed Long-Range Arylation of
Lautens,
M.
Secondary
Alkyl
Halides
in
Transition-Metal-Catalyzed Cross-Coupling Reactions. Angew.
Chem., Int. Ed. 2009, 48, 2656–2670. (d) Hu, X. Nickel-Catalyzed
Cross Coupling of Non-activated Alkyl Halides: A Mechanistic
Perspective. Chem. Sci. 2011, 2, 1867–1886.
(5) For selected reviews on C–H activation, see: (a) Gutekunst,
W. R.; Baran, P. S. C–H Functionalization Logic in Total Synthesis.
Chem. Soc. Rev. 2011, 40, 1976–1991; (b) McMurray, L.; O’Hara,
F.; Gaunt, M. J. Recent Developments in Natural Product
Synthesis Using Metal-Catalysed C–H Bond Functionalisation.
Chem. Soc. Rev. 2011, 40, 1885–1898; (c) White, M. C. Adding
Aliphatic C–H Bond Oxidations to Synthesis. Science 2012, 335,
3
Primary Csp –H Bonds. Angew. Chem., Int. Ed. 2012, 51, 10808–
10811. (c) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Enantioselective
Construction of Remote Quaternary Stereocenters. Nature
2014, 508, 340–344. (d) Larionov, E.; Lin, L.; Guénée, L.; Mazet, C.
Scope and Mechanism in Palladium-Catalyzed Isomerizations of
Highly Substituted Allylic, Homoallylic, and Alkenyl Alcohols. J.
Am. Chem. Soc. 2014, 136, 16882–16894. (e) Hamasaki, T.;
Aoyama, Y.; Kawasaki, J.; Kakiuchi, F.; Kochi, T. Chain Walking as
a Strategy for Carbon–Carbon Bond Formation at Unreactive
Sites in Organic Synthesis: Catalytic Cycloisomerization of
Various 1,n-Dienes. J. Am. Chem. Soc. 2015, 137, 16163–16171.
(f) Dupuy, S.; Zhang, K.-F.; Goutierre, A.-S.; Baudoin, O.
Terminal-Selective Functionalization of Alkyl Chains by
Regioconvergent Cross-Coupling. Angew. Chem., Int. Ed. 2016,
55, 14793–14797. (g) Lin, L.; Romano, C.; Mazet, C. Palladium-
Catalyzed Long-Range Deconjugative Isomerization of Highly
Substituted α , β -Unsaturated Carbonyl Compounds. J. Am.
Chem. Soc. 2016, 138, 10344–10350. (h) Singh, S.; Bruffaerts, J.;
Vasseur, A.; Marek, I. A Unique Pd-Catalysed Heck Arylation as a
Remote Trigger for Cyclopropane Selective Ring-Opening. Nat.
Commun. 2017, 8, 14200. (i) Kohler, D. G.; Gockel, S. N.;
Kennemur, J. L.; Waller, P. J.; Hull, K. L. Palladium-Catalysed anti-
Markovnikov Selective Oxidative Amination. Nat. Chem. 2018,
807.
(
6) For selected reviews on metal-hydride chemistry, see: (a)
Deutsch, C.; Krause, N.; Lipshutz, B. H. CuH-Catalyzed Reactions.
Chem. Rev. 2008, 108, 2916–2927. (b) Greenhalgh, M. D.; Jones,
A. S.; Thomas, S. P. Iron-Catalysed Hydrofunctionalisation of
Alkenes and Alkynes. ChemCatChem 2015, 7, 190–222. (c)
Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Copper Hydride
Catalyzed Hydroamination of Alkenes and Alkynes. Angew.
Chem., Int. Ed. 2016, 55, 48–57. (d) Crossley, S. W. M.; Obradors,
C.; Martinez, R. M.; Shenvi, R. A. Mn-, Fe-, and Co-Catalyzed
Radical Hydrofunctionalizations of Olefins. Chem. Rev. 2016,
116, 8912–9000. (e) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.;
Garza, V. J.; Krische, M. J. Metal-Catalyzed Reductive Coupling
of Olefin-Derived Nucleophiles: Reinventing Carbonyl Addition.
10, 333–340. (j) Ho, G.-M.; Judkele, L.; Bruffaerts, J.; Marek, I.
ACS Paragon Plus Environment