Published on Web 08/01/2003
Synthesis, Assembly, and Thin Film Transistors of
Dihydrodiazapentacene: An Isostructural Motif for Pentacene
†
†
§
‡
Qian Miao, Thuc-Quyen Nguyen, Takao Someya, Graciela B. Blanchet, and
,
†
Colin Nuckolls*
Contribution from Department of Chemistry, Columbia UniVersity, New York, New York 10027,
and DuPont, Central Research and DeVelopment, Wilmington, Delaware 19880
Abstract: The study below details the synthesis, assembly, and thin film transistors from dihydrodiaza-
pentacenes. These molecules have the same molecular shape as pentacene but are much easier to prepare
and have much greater environmental stability. Thin films made from the dihydrodiazapentacene behave
as field effect transistors with mobilities and on/off ratios high enough to be useful in certain applications.
X-ray diffraction and AFM experiments on these films show that the molecules stack in layers with their
long axis upright from the surface. Some of the derivatives synthesized for this study have unexpectedly
high solubility in polar solvents such as DMF and DMSO. The crystal structure from DMF reveals self-
assembled channels with each of the aniline functionalities forming a hydrogen bond with solvent. In more
nonpolar solvents, the solid-state assembly switches to a herringbone motif characteristic of the linear
acenes.
2
Introduction
studied, it is not clear if these molecules will ultimately be
useful in devices because of a number of interrelated factors
The study below details the syntheses of a number of
derivatives of dihydrodiazapentacenes (2 and 3) and their
electrical response in thin films. Although some derivatives of
including low thermal stability, difficult derivatization, and facile
2,5,6
Although high field effect mobility5
atmospheric degradation.
is one important criterion for organic FETs, ultimate success
in these organic transistors will require a holistic approach to
1
these compounds have been known for over a century, this
study appears to be the first time that their electrical properties
in thin films has been reported. The important finding is that
some derivatives of these materials behave as organic field-
4
c,6
creating new building blocks.
The most challenging derivatives to synthesize among the
linear acenes are ones that have their ends but not their edges
functionalized. These derivatives are difficult to prepare due to
the lack of mild and efficient methods for aromatization and
2
4
effect transistors (FETs) with on/off ratios greater than >10
and mobilities approaching 10-2 cm V s . Thin-film organic
2
-1 -1
FETs are useful because they can be deposited through a variety
8
annulation. In contrast, the synthesis of linear pentacycles such
3
of techniques on flexible substrates over large area. Some
as the dihydrodiazapentacenes (2 and 3), where nitrogens
replaces two of the carbons of pentacene, are efficiently achieved
through simple condensation reactions between a 1,2-aromatic
organic molecules have a sufficiently good electrical profile that
they can be used as the drivers for individual pixels making
them prime for applications such as electronic paper and large
1
diamine and a 1,2-aromatic diol. Particularly attractive are the
4
area displays. Although certain compounds such as pentacene
derivatives in Figure 1csthe 5,14-dihydrodiazapentaceness
(1) and derivatives of oligothiophenes have been heavily
(
4) (a) Rogers, J. A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju,
V. R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Proc. Nat.
Acad. Sci. (USA). 2001, 98, 4835-4840. (b) Roger, J. A.; Bao, Z. J. Polym.
Sci. Pt. A: Polym. Chem. 2002, 40, 3327-3334. (c) Huitema, H. E. A.;
Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.;
Cantatore, E.; Herwig, P. T.; van Breemen, A. J. J. M.; de Leeuw, D. M.
Nature 2001, 414, 599.
†
Department of Chemistry, Columbia University.
DuPont, Central Research and Development.
Current address: School of Engineering, University of Tokyo, 7-3-1
‡
§
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
(
1) (a) Hinsberg, O. Ann. Chem. 1901, 319, 260. (b) Manassen, J.; Khalif, S.
J. Am. Chem. Soc. 1966, 88, 1943. (c) Kummer, F.; Zimmermann, H.;
Berichte der Bunsen-Gesellschaft 1967, 71(9-10), 1119. (d) Leete, E.;
Ekechukwu, O.; Delvigs, P. J. Org. Chem. 1966, 31, 3734.
(5) Small organic molecules with mobilities approaching amorphous silicon:
(a) Lin, Y.-Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Trans.
Elec. DeV. 1997, 44, 1325. (b) Li, X. C.; Sirringhaus, H.; Garnier, F.;
Holmes, A. B.; Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.; Friend,
R. H. J. Am. Chem. Soc. 1998, 120, 2206-2207. (c) Katz, H. E.; Lovinger,
A. J.; Laquindanum, J. G. Chem. Mater. 1998, 10, 457. (d) Laquindanum,
J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664-672.
(e) Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741-
1744. (f) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.;
Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478-481. (g) see
ref 2b. (h) see ref 6.
(
2) Reviews on organic FET’s from small molecules: (a) Dimitrakopoulos,
C. D.; Malenfant, P. R. L. AdV. Mater. 2002, 14, 99. (b) Katz, H. E.; Bao,
Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359. (c) Katz, H. E.; Bao, Z. J.
Phys. Chem. B 2000, 104, 671. (d) Horowitz, G. AdV. Mater. 1998, 10,
3
65. (e) Katz, H. E. J. Mater. Chem. 1997, 7, 369.
(
3) (a) Blanchet, G. B.; Loo, Y.-L.; Rogers, J. A.; Gao, F.; Fincher, C. R.
Appl. Phys. Lett. 2003, 82, 463-465. (b) Loo, Y.-L.; Someya, T.; Baldwin,
K. W.; Bao, Z., Ho, P.; Dodabalapur, A.; Katz, H. E.; Roger, J. A. Proc.
Nat. Acad. Sci. (USA). 2002, 99, 10 252-10 256. (c) Drury, C. J.; Mutsaers,
C. M. J.; Hart, C. M.; Matters, M.; de Leeuw, D. M. Appl. Phys. Lett.
(6) Meng, H.; Bao, Z.; Lovinger, A. J.; Wang, B.-C.; Mujsce, A. M. J. Am.
Chem. Soc. 2001, 123, 9214-9215.
(7) Matthews, C. C.; Bros, A. B.; Baas, J.; Meetsma, A.; deBoer, J.-L.; Palsera,
T. T. M. Acta Crystallogr. 2001, C57, 939-941.
1
998, 73, 108-110. (d) Calvert, P. Chem. Mater. 2001, 13, 3299-3305.
(
e) Voss, D. Nature 2000, 407, 442-444.
1
0284 J. AM. CHEM. SOC. 2003, 125, 10284-10287
9
10.1021/ja036466+ CCC: $25.00 © 2003 American Chemical Society