A R T I C L E S
Sinkeldam et al.
thalimide)15 with OPVs since this type of chromophore has been
24
studied in great detail in supramolecular homo-assemblies and
2
5
hetero-assemblies. Furthermore, the large π-system of OPV
chromophores may help to stabilize the helical architecture.
Recently, we reported a general synthetic strategy to obtain an
2
6
array of 3,6-diaminophthalimides. These molecules form the
building blocks that give access to a collection of peripherally
functionalized foldamers. A high-yielding synthetic methodology
is described for the introduction of OPV3 and OPV4 chro-
mophores. Both chromophores possess chiral alkyl tails to allow
circular dichroism (CD) spectroscopy studies, and an additional
gallic acid derived moiety guarantees solubility in most common
organic solvents.
Figure 1. Poly(ureidophthalimide)s and a detailed hydrogen-bonding unit.
class is described in more detail in recent reviews.12 Less
common is the design based on oligo(aromatic urea)s: whereas
13
the ones reported by Gong et al. are present in a cisoid
conformation, those of Zimmerman et al.14 are forced in a
transoid conformation due to intramolecular hydrogen bonding.
Recently, we presented a helical foldamer based on poly-
Results and Discussion
Design and Synthesis. Target poly(ureidophthalimide)s
decorated with OPV3 (3a) and OPV4 (3b) were obtained by
26
(ureidophthalimide)s in which the urea linker adopts a cisoid
reaction of 3,6-diaminophthalimides 1a,b with the correspond-
ing diisocyanates 2a,b in refluxing toluene in the presence of
p-dimethylaminopyridine (DMAP) (Scheme 1).
conformation due to intramolecular hydrogen bonding (Figure
15
1
). Similar to the oligoamides, these poly(aromatic urea)s use
intramolecular hydrogen bonding to direct folding. Molecular
Monomers 1a,b are synthesized starting by reaction of 3,6-
bis(acetylamino)phthalic anhydride 4 with primary amines
16
modeling studies as well as an X-ray structure of a representa-
17
27 28
tive dimer strongly support the curved and coplanar conforma-
tion of the backbone. This curvature will lead to a helical
arrangement for longer oligomers with lengths exceeding 7-9
units, where it is proposed that π-π interactions further stabilize
the helical architecture once a turn is completed.
5a, b in refluxing dioxane for 17 h, which gives 3,6-bis-
2
6
(acetylamino)phthalimides 6 (Scheme 2). Subsequent amide
hydrolysis of 6 in the presence of aqueous HCl in refluxing
2
6
dioxane furnishes 3,6-diaminophthalimides 1a,b, which can
be quantitatively converted into the corresponding diisocyanates
2a,b by exposure to a 20 wt % solution of phosgene in toluene.
After polymerization, column chromatography on silica gel
with a gradient of chloroform to 10 v% ethyl acetate in
chloroform easily removes the nonmigrating DMAP and allows
separation of the longer from the shorter oligomers. The first
fraction 3aI contains oligomers of approximately 6-25 units
(66 wt %), whereas the second fraction 3aII consists of
oligomers with lengths between 2 and 7 units (15 wt %) based
A potentially interesting function for helical foldamers is the
exploitation of the inner void to host a guest. Depending on
the design, helical foldamers may possess an inner void of
18
19-21
sufficient size to accommodate ions or small molecules.
The efforts of this research may eventually lead to synthetic
trans-membrane ion channels.9b In addition to the exploitation
of the inner void, the helical architecture may also be a
promising candidate for the organization of peripheral func-
tionality. To the best of our knowledge, this opportunity has
not yet been addressed. Alignment of chromophores is of interest
in the field of molecular electronics such as organic photovol-
1
on GPC analysis (Figure 2). Although H NMR end-group
analysis has proven a most reliable method to estimate the
average oligomeric length, we found that GPC is more useful
2
2
23
1
taics and organic field effect transistors. In this article, we
report foldamers that utilize the periphery to align oligo(p-
phenylenevinylene) (OPV) chromophores in a chiral fashion.
We chose to decorate the previously reported poly(ureidoph-
in this case since the broad and overlapping signals in H NMR
2
9
1
hamper proper end-group analysis. Moreover, H NMR gives
the average length, whereas GPC gives more information on
the total distribution.
A similar separation on polymeric distribution 3b gave longer
OPV4-decorated ureidophthalimide oligomers 3bI with lengths
ranging from 5 to 21 units (61 wt %) and shorter oligomers
(
12) Huc, I. Eur. J. Org. Chem. 2004, 17-29.
(13) Zhang, A.; Han, Y.; Yamato, K.; Zeng, X. C.; Gong, B. Org. Lett. 2006,
8
, 803-806.
(
(
(
(
14) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.; Murray,
T. J. J. Am. Chem. Soc. 2001, 123, 10475-10488.
15) Van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. Chem. Commun.
(24) A selection: (a) Hoeben, F. J. M.; Herz, L. M.; Daniel, C.; Jonkheijm, P.;
Schenning, A. P. H. J.; Silva, C.; Meskers, S. C. J.; Beljonne, D.; Phillips,
R. T.; Friend, R. H.; Meijer, E. W. Angew. Chem., Int. Ed. 2004, 43, 1976-
1979. (b) Ajayaghosh, A.; George, S. J.; Praveen, V. K. Angew. Chem.,
Int. Ed. 2003, 42, 332-335. (c) Schenning, A. P. H. J.; Jonkheijm, P.;
Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2001, 123, 409-416.
(25) A selection: (a) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning,
A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 13484-13485.
(b) Schenning, A. P. H. J.; van Herrikhuyzen, J.; Jonkheijm, P.; Chen, Z.;
W u¨ rthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
(c) Beckers, E. H. A.; van Hal, P. A.; Schenning, A. P. H. J.; El-Ghayoury,
A.; Peeters, E.; Rispens, M. T.; Hummelen, J. C.; Meijer, E. W.; Janssen,
R. A. J. J. Mater. Chem. 2002, 12, 2054-2060.
2
004, 60-61.
16) Sinkeldam, R. W.; van Houtem, M. H. C. J.; Pieterse, K.; Vekemans, J. A.
J. M.; Meijer, E. W. Chem.-Eur. J. 2006, 12, 6129-6137.
17) Katayama, H.; Kooijmans, H.; Vekemans, J. A. J. M.; Meijer, E. W.
Unpublished results.
(
(
18) Maurizot, V.; Linti, G.; Huc, I. Chem. Commun. 2004, 924-925.
19) (a) Goto, K.; Moore, J. S. Org. Lett. 2005, 7, 1683-1686. (b) Stone, M.
T.; Moore, S. J. Org. Lett. 2004, 6, 469-472. (c) Tanatani, A.; Hughes, T.
S.; Moore, J. S. Angew. Chem., Int. Ed. 2002, 41, 325-328. (d) Prince, R.
B.; Barnes, S. A.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 2758-2762.
20) Garric, J.; L e´ ger, J. M.; Huc, I. Angew. Chem., Int. Ed. 2005, 44, 1954-
(
(
(
1
958.
21) Hou, J. L.; Shao, X. B.; Chen, G. J.; Zhou, Y. X.; Jiang, X. K.; Li, Z. T.
J. Am. Chem. Soc. 2004, 126, 12386-12394.
(26) Sinkeldam, R. W.; van Houtem, M. H. C. J.; Koeckelberghs, G.; Vekemans,
J. A. J. M.; Meijer, E. W. Org. Lett. 2006, 8, 383-385.
22) Recent reviews: (a) Segura, J. L.; Martin, N.; Guldi, D. M. Chem. Soc.
ReV. 2005, 34, 31-47. (b) Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004,
2
(27) The synthesis of 5a (OPV3-NH ) will be published elsewhere.
(28) (a) Peeters, E.; van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer,
E. W. Chem.-Eur. J. 2002, 8, 4470-4474. (b) Syamakumari, A.;
Schenning, A. P. H. J.; Meijer, E. W. Chem.-Eur. J. 2002, 8, 3353-
3361.
1
9, 1924-1945.
(
23) Recent reviews: (a) Horowitz, G. AdV. Mater. 1998, 10, 365-377. (b)
Dodabalapur, A.; Katz, H. E.; Torsi, L. AdV. Mater. 1996, 8, 853-855. (c)
Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem. 2005, 15, 53-65. (d) Kraft, A.
Chem. Phys. Chem. 2001, 2, 163-165.
(29) Dolain, C.; Grelard, A.; Laguerre, M.; Jiang, H.; Maurizot, V.; Huc, I.
Chem.-Eur. J. 2005, 11, 6135-6144.
16114 J. AM. CHEM. SOC.
9
VOL. 128, NO. 50, 2006