Dalton Transactions
Paper
(126 MHz, CDCl3) δ 134.7, 133.7, 129.6, 128.3, 116.6, 103.2,
0.16; LRMS (ESI, M = C24H28Ge) m/z = 533 [M + Na]+;
Anal. Calcd for C22H28Ge3: C, 51.78; H, 5.53. Found: C, 51.61;
H, 5.52.
A. W.-M. Lee, J.-X. Shia and K.-W. Cheah, Chem. Commun.,
2004, 2420–2421; (h) W.-Y. Wong, S.-Y. Poon, J.-X. Shi and
K.-W. Cheah, J. Polym. Sci., Part A: Polym. Chem., 2006, 44,
4804–4824; (i) W.-Y. Wong, S.-Y. Poon, J.-X. Shi and
K.-W. Cheah, J. Inorg. Organomet. Polym. Mater., 2007, 17,
189–200.
3 (a) V. Maraval and R. Chauvin, Chem. Rev., 2006, 106, 5317–
5343; (b) A. de Meijere and S. I. Kozhushkov, Top. Curr.
Chem., 1999, 201, 1–42.
Diisopropylbis((trimethylgermyl)ethynyl)germane (8b). To a
stirred solution of 1b 9 (750 mg, 3.59 mmol) in THF (35 mL)
was added n-butyllithium (1.63 M in hexane, 4.85 mL,
7.90 mmol) dropwise at −78 °C under a nitrogen atmosphere.
After 2 h, chlorotrimethylgermane (1.21 g, 7.90 mmol) was
added at the same temperature, and the reaction mixture was
warmed up to ambient temperature. After 2 h, the reaction was
quenched with a saturated aqueous solution of ammonium
chloride at 0 °C. The resulting mixture was extracted with
ether, and the organic layer was washed with water and brine.
The combined organic layers were dried over magnesium
sulfate, and the solvent was removed in vacuo. The resulting
residue was purified by silica gel column chromatography
(hexane to dichloromethane/hexane = 1/10) and recycling pre-
parative HPLC to afford 8b (1.08 g, 68%). Colorless oil; Rf value
0.14 (hexane); IR (NaCl, neat) νmax 2944, 2865, 1464, 1241,
4 (Sila[N]pericyclynes) (a) H. Sakurai, Y. Eriyama, A. Hosomi,
Y. Nakadaira and C. Kabuto, Chem. Lett., 1984, 13, 595–598;
(b) R. Gleiter, W. Schäfer and H. Sakurai, J. Am. Chem. Soc.,
1985, 107, 3046–3050; (c) R. Bortolin, B. Parbhoo and
S. S. D. Brown, J. Chem. Soc., Chem. Commun., 1988, 1079–
1081; (d) R. Bortolin, S. S. D. Brown and B. Parbhoo, Inorg.
Chim. Acta, 1989, 158, 137–139; (e) E. Hengge and
A. Baumegger, J. Organomet. Chem., 1989, 369, C39–C42;
(f) A. Baumegger, E. Hengge, S. Gamper, E. Hardtweck and
R. Janoschek, Monatsh. Chem., 1991, 122, 661–671;
(g) M. Unno, T. Saito and H. Matsumoto, Chem. Lett., 1999,
28, 1235–1236; (h) M. Unno, T. Saito and H. Matsumoto,
Bull. Chem. Soc. Jpn., 2001, 74, 2407–2413.
5 (Carbo[N]pericyclynes) (a) L. T. Scott, G. J. DeCicco,
J. L. Hyun and G. Reinhardt, J. Am. Chem. Soc., 1983, 105,
7760–7761; (b) L. T. Scott, G. J. DeCicco, J. L. Hyun and
G. Reinhardt, J. Am. Chem. Soc., 1985, 107, 6546–6555;
(c) L. Maurette, C. Tedeschi, E. Sermot, M. Soleilhavoup,
F. Hussain, B. Donnadieu and R. Chauvin, Tetrahedron,
2004, 60, 10077–10098; (d) O. V. Shishkin, R. I. Zubatyuk,
V. V. Dyakonenko, C. Lepetit and R. Chauvin, Phys. Chem.
Chem. Phys., 2011, 13, 6837–6848; (e) L. Leroyer, C. Lepetit,
A. Rives, V. Maraval, N. Saffon-Merceron, D. Kandaskalov,
D. Kieffer and R. Chauvin, Chem. – Eur. J., 2012, 18, 3226–
3240; (f) A. Rives, I. Baglai, C. Barthes, V. Maraval,
N. Saffon-Merceron, A. Saquet, Z. Voitenko, Y. Volovenko
and R. Chauvin, Chem. Sci., 2015, 6, 1139–1149.
6 (Phospha[N]pericyclynes) (a) L. T. Scott and M. Unno,
J. Am. Chem. Soc., 1990, 112, 7823–7825; (b) G. Märkl,
T. Zollitsch, P. Kreimeier, M. Prinzhorn, S. Reithinger
and E. Eibler, Chem. – Eur. J., 2000, 6, 3806–3820;
(c) S. G. A. van Assema, P. B. Kraikivskii, S. N. Zelinskii,
V. V. Saraev, G. B. de Jong, F. J. J. de Kanter, M. Schakel,
J. C. Slootweg and K. Lammertsma, J. Organomet. Chem.,
2007, 692, 2314; (d) S. G. A. van Assema, G. Bas de Jong,
A. W. Ehlers, F. J. J. de Kanter, M. Schakel, A. L. Spek,
M. Lutz and K. Lammertsma, Eur. J. Org. Chem., 2007,
2404–2412.
7 (Theoretical studies of pericyclynes comprising other
elements) (a) A. I. Boldyrev, V. V. Zbdankin, J. Simons and
P. J. Stang, J. Am. Chem. Soc., 1992, 114, 10569–10572;
(b) D. B. Werz and R. Gleiter, Org. Lett., 2004, 6, 589–
592.
1004, 833, 768, 667 cm−1 1H NMR (500 MHz, CDCl3) δ 1.38
;
(sept, 2H, J = 7.5 Hz), 1.16 (d, 12H, J = 7.5 Hz), 0.34 (s, 18H);
13C NMR (126 MHz, CDCl3) δ 115.1, 104.2, 18.9, 16.7, 0.04,
0.02, 0.00; LRMS (ESI, M = C16H32Ge3) m/z = 465 [M + Na]+.
Acknowledgements
This work was supported in part by a Grant-in-Aid for Scienti-
fic Research on Innovative Areas “New Polymeric Materials
Based on Element-Blocks (no. 2401)” of MEXT (no. 15H00750
for H. T. and no. 25102531 for K. K.), CREST-JST Japan for
K. K. and the Tokuyama Science Foundation for K. T. We also
thank Profs Naoki Aratani and Hiroko Yamada (CV and DPV),
Mr Kazuo Fukuda, Ms Yoshiko Nishikawa (MS measurement),
Mr Fumio Asanoma (Elemental analysis) and Mr Shohei Katao
(X-ray crystallographic analysis) of NAIST.
Notes and references
1 Acetylene Chemistry: Chemistry, Biology, and Material
Science, ed. F. Diederich, P. J. Stang and R. R. Tykwinski,
Wiley-VCH, Weinheim, 2005.
2 (a) R. Gleiter and D. B. Werz, Chem. Rev., 2010, 110, 4447–
4488; (b) S. Ijadi-Maghsoodi, Y. Pang and T. J. Barton,
J. Polym. Sci., Part A: Polym. Chem., 1990, 28, 955–965;
(c) R. J. P. Corriu, C. Guerin, B. Henner, A. Jean and
H. Mutin, J. Organomet. Chem., 1990, 396, C35–C38;
(d) A. W. M. Lee, A. B. W. Yeung, M. S. M. Yuen, H. Zhang,
X. Zhao and W. Y. Wong, Chem. Commun., 2000, 75–76;
(e) W.-Y. Wong, A. W.-M. Lee, C.-K. Wong, G.-L. Lu,
H. Zhang, T. Mo and K.-T. Lam, New J. Chem., 2002, 26,
354–360; (f) W.-Y. Wong, C.-K. Wong, G. L. Lu,
K. W. Cheah, J. X. Shi and Z. Lin, J. Chem. Soc., Dalton
Trans., 2002, 4587–4594; (g) W.-Y. Wong, S.-Y. Poon,
8 (a) R. Gleiter and G. Haberhauer, Aromaticity and Other
Conjugation Effects, Wiley-VCH, Weinheim, 2012;
(b) R. Gleiterm, D. Kratz, W. Schäfer and V. Schehlmann,
J. Am. Chem. Soc., 1991, 113, 9258–9264; (c) E. Göransson,
This journal is © The Royal Society of Chemistry 2015
Dalton Trans., 2015, 44, 11811–11818 | 11817