Paper
Organic & Biomolecular Chemistry
structure containing hydrophobic residues, which facilitate the
uptake.35,36 Thus, peptoids 3 and 4 might be good substitutes
for natural CPPs.
4 (a) H. Xia, X. Gao, G. Gu, Z. Liu, Q. Hu, Y. Tu, Q. Song,
L. Yao, Z. Pang, X. Jiang, J. Chen and H. Chen,
Int. J. Pharm., 2012, 436, 840–850; (b) S. Pujals,
N. G. Bastús, E. Pereiro, C. López-Iglesias, V. F. Puntes,
M. J. Kogan and E. Giralt, ChemBioChem, 2009, 10, 1025–
1031.
5 (a) M. Green and P. M. Loewenstein, Cell, 1988, 55, 1179–
1188; (b) A. D. Frankel and C. O. Pabo, Cell, 1988, 55, 1189–
1193.
6 D. Derossi, M. H. Joliot, G. Chassaing and M. Prochiantz,
J. Biol. Chem., 1994, 269, 10444–10450.
7 Y. Su, T. Doherty, A. J. Waring, P. Ruchala and M. Hong,
Biochemistry, 2009, 48, 4587–4595.
Additionally, peptoids 1–4 have been subjected to toxicity tests
for their suitability as molecular transporters (Fig. S3†). With an
LD50 = 91 µM for peptoid 1, LD50 = 86 µM for peptoid 2 and
a slightly higher toxicity for the amphiphilic peptoids with
LD50 = 42 µM for peptoid 3 and LD50 = 38 µM for peptoid 4,
the peptoids show moderate toxicity when compared to the
conventional hexameric peptoid containing alkyl-amino group
side chains with an LD50 > 200 µM37,38 and i.e. the CPP Antp
with an LD50 > 100 µM.39
Initially, it was supposed that the hydrophobic side chains
would influence cellular uptake towards mitochondria, which
was proven for short amphiphilic CPPos.24b However, the
corresponding peptoids 3 and 4 are still accumulating within
8 Y. Su, S. Li and M. Hong, Amino Acids, 2013, 44, 821–833.
9 Y. Su, A. J. Waring, P. Ruchala and M. Hong, Biochemistry,
2010, 49, 6009–6020.
endosomal compartments in HeLa cells. To further under- 10 F. Milletti, Drug Discovery Today, 2012, 17, 850–860.
stand the localization of the peptoids, three dimensional 11 (a) K. L. Horton, K. M. Stewart, S. B. Fonseca, Q. Guo and
images of cells were taken using z-stacks and processed using
Imaris software (see ESI†). These images however verified that
peptoids are localized neither in the nuclei nor in the mito-
S. O. Kelley, Chem. Biol., 2008, 15, 375–382; (b) D. Kalafut,
T. N. Anderson and J. Chmielewski, Bioorg. Med. Chem.
Lett., 2011, 22, 561–563.
chondria but rather stay in the endosomal compartment 12 (a) Y. Niu, G. Bai, H. Wu, R. E. Wang, Q. Qiao, S. Padhee,
before being released into the cytosol.
R. Buzzeo, C. Cao and J. Cai, Mol. Pharmaceutics, 2012, 9,
1529–1534; (b) D. S. Daniels and A. Schepartz, J. Am. Chem.
Soc., 2007, 129, 14578–14579; (c) D. Kalafut, T. N. Anderson
and J. Chmielewski, Bioorg. Med. Chem. Lett., 2012, 22,
561–563; (d) D. Jha, R. Mishra, S. Gottschalk,
K.-H. Wiesmüller, K. Ugurbil, M. E. Maier and
J. Engelmann, Bioconjugate Chem., 2011, 22, 319–328.
In conclusion, a straightforward modular approach to build
diverse peptoids from an easily accessible alkyne containing
peptoid backbone using the copper mediated cycloaddition is
presented. Using this method, chemically diverse side chains
can be introduced circumventing excessive use of protecting
groups. Two hydrophilic peptoids 1 and 2 as well as two novel
amphiphilic peptoids 3 and 4 have been synthesized. In 13 P. Lundin, H. Johansson, P. Guterstam, T. Holm,
general, it was possible to show that triazole-rings do not influ-
ence cellular uptake and moreover that internalization of
M. Hansen, Ü. Langel and S. E. L. Andaloussi, Bioconjugate
Chem., 2008, 19, 2535–2542.
amphiphilic structures with a reduced density of positive 14 D. S. Youngblood, S. A. Hatlevig, J. N. Hassinger,
charges is also possible. With this method in hand, it should
be possible to design effective peptoid molecular transporters.
P. L. Iversen and H. M. Moulton, Bioconjugate Chem., 2007,
18, 50–60.
15 E. L. Snyder, B. R. Meade, C. C. Saenz and S. F. Dowdy,
PLoS Biol., 2004, 2, E36.
16 V. Parthsarathy, P. L. McClean, C. Holscher, M. Taylor,
C. Tinker, G. Jones, O. Kolosov, E. Salvati, M. Gregori,
M. Masserini and D. Allsop, PLoS One, 2013, 8, e54769.
Acknowledgements
This work was supported by the Landesgraduiertenförderung
Baden-Württemberg (scholarship to S. B. L. V.), and by the 17 X. Zhang, Y. Jin, M. R. Plummer, S. Pooyan, S. Gunaseelan
Carl Zeiss Stiftung (scholarship to D. F.), the Helmholtz and P. J. Sinko, Mol. Pharm., 2009, 6, 836–848.
programme Biointerface and the DFG Excellence Center of 18 D. F. Schorderet, V. Manzi, K. Canola, C. Bonny,
Functional Nanostructures (CFN).
Y. Arsenijevic, F. L. Munier and F. Maurer, Clin. Experiment
Ophthalmol., 2005, 33, 628–635.
19 N. Umezawa, M. A. Gelman, M. C. Haigis, R. T. Raines and
S. H. Gellman, J. Am. Chem. Soc., 2002, 124, 368–369.
20 T. B. Potocky, A. K. Menon and S. H. Gellman, J. Biol.
Chem., 2003, 278, 50188–50194.
Notes and references
1 (a) N. Svensen, J. G. A. Walton and M. Bradley, Trends Phar-
macol. Sci., 2012, 33, 186–192; (b) K. Petrak, Drug Dev. Res., 21 M. L. Huang, S. B. Y. Shin, M. A. Benson, V. J. Torres and
2012, 73, 59–65. K. Kirshenbaum, ChemMedChem, 2012, 7, 114–122.
2 F. Mussbach, M. Franke, A. Zoch, B. Schaefer and 22 D. G. Udugamasooriya, S. P. Dineen, R. A. Brekken and
S. Reissmann, J. Cell. Biochem., 2011, 112, 3824–3833. T. Kodadek, J. Am. Chem. Soc., 2008, 130, 5744–5752.
3 I. Nakase, H. Akita, K. Kogure, A. Gräslund, Ü. Langel, 23 (a) P. A. Wender, D. J. Mitchell, K. Pattabiraman,
H. Harashima and S. Futaki, Acc. Chem. Res., 2012, 45,
1132–1139.
E. T. Pelkey, L. Steinman and J. B. Rothbard, Proc. Natl.
Acad. Sci. U. S. A., 2000, 97, 13003–13008; (b) T. Schröder,
8200 | Org. Biomol. Chem., 2013, 11, 8197–8201
This journal is © The Royal Society of Chemistry 2013