10.1002/anie.201914807
Angewandte Chemie International Edition
RESEARCH ARTICLE
[6]
R. Gleiter, H. Rockel, H. Irngartinger, T. Oeser, Angew. Chem. Int. Ed.
1994. 33, 1270-1272; Angew. Chem. 1994. 104, 1340-1342.
J. Boomer, R. Grigg, Tetrahedron. 1999, 55, 13463-13470.
N. Suzuki, H. Tezuka, Y. Fukuda, H. Yoshida, M. Iwasaki, M. Saburi, M.
Tezuka, T. Chihara, Y. Wakatsuki, Chem. Lett. 2004, 33, 1466-1467.
R. Faust, F. Mitzel, Perkin 1 2000, 3746-3751.
the general design principles described herein to invent
compounds that are atropisomerically-stable at ambient
temperature. Such systems offer new design possibilities for
enantiomer recognition and catalysis.
[7]
[8]
[9]
The preparation of expanded dendralene 23 (Scheme 5) and
radialenes 24 and 25 (Scheme 6) represent a proof-of-principle.
Evidently, many variations on these themes can be envisaged,
including the incorporation of arylene, heteroatom, and metal-
based spacers, with potential applications of these new cross-
conjugated materials in optics and electronics. Attempts to
experimentally verify these predictions are under way.
[10] (a) H. Hopf, M. Theurig, Angew. Chem. Int. Ed. 1994, 33, 1099-1100;
Angew. Chem. 1994, 106, 1173-1174; (b) H. Hopf, M. Theurig, P.
Jones, P. Bubenitschek, Liebigs Ann. 1996, 1301-1311.
[11] (a) M. I. Bruce, B. C. Hall, B. D. Kelly, P. J. Low, B. W. Skelton, A. H.
White, J. Chem. Soc., Dalton Trans. 1999, 3719-3728; (b) M. I. Bruce,
M. E. Smith, B. W. Skelton, A. H. White, J. Organomet. Chem. 2001,
637-639, 484-49; (c) M. I. Bruce, M. L. Cole, C. R. Parker, B. W.
Skelton, A. H. White, Organometallics 2008, 27, 3352-3367; (d) M. I.
Bruce, A. Burgun, G. Grelaud, C. Lapinte, C. R. Parker, T. Roisnel, B.
W. Skelton, N. N. Zaitseva, Organometallics 2012, 31, 6623-6634; (e)
M. I. Bruce, A. Burgun, M. Jevric, J. C. Morris, B. K. Nicholson, C. R.
Parker, N. Scoleri, B. W. Skelton, N. N. Zaitseva, J. Organomet. Chem.
2014, 756, 68-78; (f) A. Burgun, B. G. Ellis, T. Roisnel, B. W. Skelton,
M. I. Bruce, C. Lapinte, Organometallics 2014, 33, 4209-4219.
Experimental Section
Full experimental details are provided in the Supporting
Information.
[12] (a) H. N. Roberts, N. J. Brown, R. Edge, E. C. Fitzgerald, Y. T. Ta, D.
Collison, P. J. Low, M. W. Whiteley, Organometallics 2012, 31, 6322-
6335; (b) B. Xi, I. P. C. Liu, G.-L. Xu, M. M. R. Choudhuri, M. C.
DeRosa, R. J. Crutchley, T. Ren, J. Am. Chem. Soc. 2011, 133, 15094-
15104; (c) N. J. Brown, D. Collison, R. Edge, E. C. Fitzgerald, P. J. Low,
M. Helliwell, Y. T. Ta, M. W. Whiteley, Chem. Commun. 2010, 46,
2253-2255; (d) S. N. Semenov, O. Blacque, T. Fox, K. Venkatesan, H.
Berke, Angew. Chem. Int. Ed. 2009, 48, 5203-5206.
Acknowledgements
This work was supported by the Australian Research Council
(DP160104322). Some of this research was undertaken on the
MX1 beamline at the Australian Synchrotron, part of ANSTO.
We warmly thank Mitchell Blyth (ANU) for advice with
calculations, and Chris Blake (ANU) for assistance with VTNMR
experiments and line shape analysis.
[13] R. R. Jones, R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660- 661; (b)
review: M. Kar, A. Basak, Chem. Rev. 2007, 107, 2861-2890.
[14] (a) R. B. Woodward, R. Hoffman, J. Am. Chem. Soc. 1965, 87, 395-397;
(b) R. B. Woodward, R. Hoffman, Angew. Chem. Int. Ed. 1969, 8, 781-
853.
Keywords: hydrocarbons • 1,3-butadienes • cross-coupling •
conformation analysis • atropisomerism
[15] We support this statement with the following excerpt, taken from
reference 10(b): “Although structurally simple, these compounds
present a considerable challenge to synthesis. On the one hand, this is
connected with the very high propensity of the products – and often
also of the substrates and intermediates – to undergo unspecific
reactions such as ‘polymerization’ or ‘oxidation’.”
References
[16] (a) A. D. Payne, G. Bojase, M. N. Paddon-Row, M. S. Sherburn, Angew.
Chem. Int. Ed. 2009, 48, 4836-4839, (b) M. F. Saglam, T. Fallon, M. N.
[1]
Reviews: (a) H. Hopf, Classics in Hydrocarbon Chemistry: Syntheses,
Concepts, Perspectives, Wiley-VCH, Weinheim, 2000; (b) M. S.
Sherburn, Acc. Chem. Res. 2015, 48, 1961-1970; (c) H. Hopf; M. S.
Sherburn, Angew. Chem., Int. Ed. 2012, 51, 2298-2338.
Paddon-Row,
and
M.
S.
Sherburn,
J.
Am.
Chem.
Soc., 2016, 138, 1022-1032.
[17] E. G. Mackay, C. G. Newton, H. Toombs-Ruane, E. J. Lindeboom, T.
Fallon, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, J. Am. Chem.
Soc., 2015, 137, 14653-14659.
[2]
Recent examples: (a) tetravinylallene: C. Elgindy, J. S. Ward, M. S.
Sherburn, Angew. Chem. Int. Ed. 2019, 58, 14573-14577; (b)
tetravinylethylene: E. J. Lindeboom, A. C. Willis, M. N. Paddon-Row, M.
S. Sherburn, Angew. Chem. Int. Ed. 2014, 53, 5440-5443; (c)
[n]dendralenes: M. F. Saglam, T. Fallon, M. N. Paddon-Row, and M. S.
Sherburn, J. Am. Chem. Soc., 2016, 138, 1022-1032; (d) 1,1-
divinylallene: K. M. Cergol, C. G. Newton, A. L. Lawrence, A. C. Willis,
M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2011, 50,
10425-10428.
[18] T. Yamamoto, T. Yasuda, K. Kobayashi, I. Yamaguchi, T. Koizumi, D.
Ishii, M. Nakagawa, Y. Mashiko, N. Shimizu, Bull. Chem. Soc. Jpn.
2006, 3, 498-500.
[19] N. J. Green, A. C. Willis, M. S. Sherburn, Angew. Chem. Int.
Ed. 2016, 55, 9244-9248.
[20] For important, earlier work on direct cross-couplings involving
unactivated propargylic alcohols and allenic alcohols, see: (a) M.
Yoshida, T. Gotou, M. Ihara, Tetrahedron Lett. 2004, 45, 5573-5575; (b)
M. Yoshida, T. Gotou, M. Ihara, Chem. Commun. 2004, 1124-1125.
[21] For twofold Pd(0)-catalyzed cross-couplings of propargylic systems to
form 2,3-disubstituted-1,3-butadienes, see: (a) J. Kiji, H. Konishi, T.
Okano, S. Kometani, A. Iwasa, Chem. Lett. 1987, 313-314; (b) J. Kiji, T.
Okano, H. Kitamura, Y. Yakoyama, S. Kubota, Y. Kurita, Bull. Chem.
Soc. Jpn. 1995, 68, 616-619; (c) J. Kiji, T. Okano, E. Fujii, J. Tsuji,
Synthesis 1997, 869-870; (d) J. Kiji, Y. Kondou, M. Asahara, Y.
Yokoyama, T. Sagisaka, J. Mol. Catal. A Chem. 2003, 197, 127-132; (e)
N. Nishioka, S. Hayashi, T. Koizumi, Angew. Chem. Int. Ed. 2012, 51,
3682-3685; (f) T. Araki, Y. Manabe, K. Fujioka, H. Yokoe, M.
Kanematsu, M. Yoshida, K. Shishido, Tetrahedron Lett. 2013, 54, 1012-
[3]
[4]
[5]
(a) J. Li, Z. Xie, Y. Xiong, Z. Li, Q. Huang, S. Zhang, J. Zhou, R. Liu, X.
Gao, C. Chen, L. Tong, J. Zhang, Z. Liu, Adv. Mater. 2017, 29,
1700421; (b) Z. Jia, Y. Li, Z. Zuo, H. Liu, D. Li, Y. Li, Carbon Ene-Yne.
Adv. Electron. Mater. 2017, 3, 1700133; (c) J. Li, Y. Xiong, Z. Xie, X.
Gao, J. Zhou, C. Yin, L. Tong, C. Chen, Z. Liu, J. Zhang, ACS Appl.
Mater. Interfaces 2019, 11, 2734-2739.
(a) N. A. Miller, A. C. Willis, M. S. Sherburn Chem. Commun. 2008,
1226-1228; (b) S. V. Pronin, R. A. Shenvi, J. Am. Chem. Soc. 2012,
134, 19604-19606; (c) C. G. Newton, S. L. Drew, A. L. Lawrence, A. C.
Willis, M. N. Paddon-Row, M. S. Sherburn Nat. Chem. 2015, 7, 82–86;
(d) H.-H. Lu, S. V. Pronin, Y. Antonova-Koch, S. Meister, E. A. Winzeler,
R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 7268-7271.
R. C. Larock, J. Org. Chem. 1976, 41, 2241-2246.
This article is protected by copyright. All rights reserved.