mixture at known time points. After 2 h, we detected the presence
of both fructose and glucose in the reaction mixture at 27 and
11 mol%, respectively. After 4 h, we detected traces of HMF. Fi-
nally, we achieved separation of ionic liquid 5 from the reaction
(c) J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem., Int.
Ed., 2007, 46, 7164–7183.
2 A. Pinkert, K. N. Marsh and S. S. Pang, Ind. Eng. Chem. Res., 2010,
49, 11121–11130.
3 (a) N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37,
123–150; (b) M. Freemantle, An Introduction to Ionic Liquids, RSC
Publishing, 2009; (c) A. Pinkert, K. N. Marsh, S. S. Pang and M. P.
Staiger, Chem. Rev., 2009, 109, 6712–6728; (d) M. Petkovic, K. R.
Seddon, L. P. N. Rebelo and C. S. Pereira, Chem. Soc. Rev., 2010, 40,
1383–1403.
R
products by chromatography using FluoroFlashꢀ silica gel (Fig.
1), recovering >95% of 5. This result suggests that 3-methyl-
1-(2¢,2¢,3¢,3¢,3¢-pentafluoropropyl)-imidazolium chloride (5) can
indeed be used in cellulose conversion.
4 R. C. Remsing, R. P. Swatloski, R. D. Rogers and G. Moyna, Chem.
Commun., 2006, 1271–1273.
Conclusions
5 (a) R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J.
Am. Chem. Soc., 2002, 124, 4974–4975; (b) J. Vitz, T. Erdmenger, C.
Haensch and U. S. Schubert, Green Chem., 2009, 11, 417; (c) M. E.
Zakrzewska, E. Bogel-Łukasik and R. Bogel-Łukasik, Energy Fuels,
2010, 24, 737–745.
We have synthesized seven fluorous imidazolium chloride ionic
liquids and assessed their ability to dissolve cellulose. We discov-
ered that the ability of a fluorous ionic liquid to dissolve cellulose
is highly sensitive to the structure of the imidazolium cation,
as only by decreasing the fluorous tag to a pentafluoropropyl
group was cellulose dissolution possible. An even smaller tag,
trifluoroethyl, also allowed some cellulose dissolution to occur.
Although the content of fluorine in these fluorous tags is too
small to allow for typical fluorous SPE methods, we accom-
plished the separation of cellulose hydrolysis products from our
optimal fluorous ionic liquid by utilizing chromatography with
ˇ
6 (a) J. Horvat, B. Klaic´, B. Metelko and V. Sunjic´, Croat. Chem. Acta,
1986, 59, 429–438; (b) R. Rinaldi, R. Palkovits and F. Schu¨th, Angew.
Chem., Int. Ed., 2008, 47, 8047–8050; (c) J. B. Binder and R. T. Raines,
J. Am. Chem. Soc., 2009, 131, 1979–1985; (d) A. S. Amarasekara and
O. S. Owereh, Ind. Eng. Chem. Res., 2009, 48, 10152–10155; (e) J. B.
Binder and R. T. Raines, Proc. Natl. Acad. Sci. U. S. A., 2010, 107,
4516–4521.
7 (a) D. P. Curran, Angew. Chem., Int. Ed., 1998, 37, 1174–1196; (b) N.
Spetseris, S. Hadida, D. P. Curran and T. Y. Meyer, Organometallics,
1998, 17, 1458–1459; (c) D. P. Curran and Z. Y. Lee, Green
Chem., 2001, 3, G3–G7; (d) J. van den Broeke, F. Winter, B.
J. Deelman and G. van Koten, Org. Lett., 2002, 4, 3851–3854;
(e) W. Zhang, Tetrahedron, 2003, 59, 4475–4489; (f) M. S. Yu,
D. P. Curran and T. Nagashima, Org. Lett., 2005, 7, 3677–3680;
(g) W. Zhang and D. P. Curran, Tetrahedron, 2006, 62, 11837–
11865; (h) N. L. Pohl, Angew. Chem., Int. Ed., 2008, 47, 3868–
3870.
R
FluoroFlashꢀ silica gel. Finally, we tested the pentafluoropropyl
ionic liquid in a cellulose hydrolysis reaction and discovered
its support of monomeric sugar production. These results
encourage the further development of fluorous imidazolium
chloride ionic liquids for biomass conversion processes.
8 (a) T. L. Merrigan, E. D. Bates, S. C. Dorman and J. H. Davis, Chem.
Commun., 2000, 2051–2052; (b) V. V. Rudyuk, D. V. Fedyuk and L.
M. Yagupolskii, J. Fluorine Chem., 2004, 125, 1465–1471; (c) Y. L.
Yagupolskii, T. M. Sokolenko, K. I. Petko and L. M. Yagupolskii, J.
Fluorine Chem., 2005, 126, 667–670; (d) H. Xue and J. M. Shreeve,
Eur. J. Inorg. Chem., 2005, 2573–2580; (e) J. E. Bara, C. J. Gabriel, T.
K. Carlisle, D. E. Camper, A. Finotello, D. L. Gin and R. D. Noble,
Chem. Eng. J., 2009, 147, 43–50; (f) O. Kysilka, M. Ryba´cˇkova´, M.
Skalicky´, M. Kv´ıcˇalova´, J. Cvacˇka and J. Kv´ıcˇala, J. Fluorine Chem.,
2009, 130, 629–639; (g) X. Li, D. W. Bruce and J. M. Shreeve, J.
Mater. Chem., 2009, 19, 8232–8238.
Acknowledgements
This work was supported by the Great Lakes Bioenergy Re-
search Center, a DOE Bioenergy Research Center. We are grate-
ful to A. Choudhary for his assistance with Gaussian calcula-
tions and R. L. Kubiak for her assistance with cellulose dissolu-
tion studies. This study made use of the National Magnetic Res-
onance Facility at Madison, which is supported by NIH grants
P41RR02301 (BRTP/NCRR) and P41GM66326 (NIGMS).
Additional equipment was purchased with funds from the
University of Wisconsin, the NIH (RR02781, RR08438), the
NSF (DMB-8415048, OIA-9977486, BIR-9214394) and the
USDA.
9 C. Lu, D. Vanderveer and D. D. DesMarteau, Org. Lett., 2008, 10,
5565–5568.
10 (a) S. McGrandle and G. C. Saunders, J. Fluorine Chem., 2005, 126,
451–455; (b) D. D. DesMarteau and C. Lu, J. Fluorine Chem., 2007,
128, 1326–1334.
11 T. Kitazume and T. Yamazaki, Introduction to Experimental
Methods in Organic Fluorine Chemistry, Kodansha Ltd., Tokyo,
1998.
12 S. Ahrens, A. Peritz and T. Strassner, Angew. Chem., Int. Ed., 2009,
Notes and references
48, 7908–7910.
(accessed August 4, 2010).
1 (a) J. Lewkowski, ARKIVOC, 2001, 17–54; (b) Y. Roma´n-Leshkov, C.
J. Barrett, Z. Y. Liu and J. A. Dumesic, Nature, 2007, 447, 982–986;
2722 | Green Chem., 2011, 13, 2719–2722
This journal is
The Royal Society of Chemistry 2011
©