.
Angewandte
Communications
[7] a) B. H. Northrop, Y.-R. Zheng, K.-W. Chi, P. J. Stang, Acc.
Chem. Res. 2009, 42, 1554 – 1563; b) M. M. Safont-Sempere, G.
Fernꢂndez, F. Wꢃrthner, Chem. Rev. 2011, 111, 5784 – 5814.
[8] a) P. Mukhopadhyay, A. Wu, L. Isaacs, J. Org. Chem. 2004, 69,
6157 – 6164; b) S. Liu, P. Y. Zavalij, Y.-F. Lam, L. Isaacs, J. Am.
Chem. Soc. 2007, 129, 11232 – 11241; c) P. J. Lusby, P. Mꢃller, S. J.
Pike, A. M. Z. Slawin, J. Am. Chem. Soc. 2009, 131, 16398 –
16400; d) S. M. Landge, I. Aprahamian, J. Am. Chem. Soc.
2009, 131, 18269 – 18271; e) T. Yasuda, K. Tanabe, T. Tsuji, K. K.
Coti, I. Aprahamian, J. F. Stoddart, T. Kato, Chem. Commun.
2010, 46, 1224 – 1226; f) M. Han, R. Michel, B. He, Y.-S. Chen, D.
Stalke, M. John, G. H. Clever, Angew. Chem. 2013, 125, 1358 –
1362; Angew. Chem. Int. Ed. 2013, 52, 1319 – 1323.
helicate 2, which has the ability to adapt its conformation in
the presence of planar aromatic guest molecules. It was found
that 2 forms 1:1 complexes with a range of aromatic guest
molecules which have been characterized by 1H NMR
spectroscopy and ESI-MS. Current efforts are focused upon
the use of such triggered guest binding phenomena as parts of
more complex and functional chemical networks, in particular
where such transformations might be undertaken reversibly.
Received: June 18, 2013
Revised: July 26, 2013
Published online: && &&, &&&&
[9] a) V. E. Campbell, J. R. Nitschke, Synlett 2008, 3077 – 3090; b) J.
Dçmer, J. C. Slootweg, F. Hupka, K. Lammertsma, F. E. Hahn,
Angew. Chem. 2010, 122, 6575 – 6578; Angew. Chem. Int. Ed.
2010, 49, 6430 – 6433; c) X.-P. Zhou, J. Liu, S.-Z. Zhan, J.-R.
Yang, D. Li, K.-M. Ng, R. W.-Y. Sun, C.-M. Che, J. Am. Chem.
Soc. 2012, 134, 8042 – 8045; d) S. Yi, V. Brega, B. Captain, A. E.
Kaifer, Chem. Commun. 2012, 48, 10295 – 10297; e) K.-C. Sham,
S.-M. Yiu, H.-L. Kwong, Inorg. Chem. 2013, 52, 5648 – 5650; f) Y.
Wu, X.-P. Zhou, J.-R. Yang, D. Li, Chem. Commun. 2013, 49,
3413 – 3415.
Keywords: host–guest systems · metal–organic complexes ·
self-assembly · systems chemistry · zinc
.
[1] J. Ricard in Emergent Collective Properties, Networks and
Information in Biology (Ed.: G. Bernardi), Elsevier Science,
Amsterdam, 2006.
[10] J. Hamblin, L. J. Childs, N. W. Alcock, M. J. Hannon, J. Chem.
Soc. Dalton Trans. 2002, 164 – 169.
[2] a) M. B. Elowitz, S. Leibler, Nature 2000, 403, 335 – 338; b) A.
Aderem, Cell 2005, 121, 511 – 513.
[11] C. D. Meyer, C. S. Joiner, J. F. Stoddart, Chem. Soc. Rev. 2007,
36, 1705 – 1723.
[3] a) P. B. Glover, P. R. Ashton, L. J. Childs, A. Rodger, M.
Kercher, R. M. Williams, L. De Cola, Z. Pikramenou, J. Am.
Chem. Soc. 2003, 125, 9918 – 9919; b) R. F. Ludlow, S. Otto,
Chem. Soc. Rev. 2008, 37, 101 – 108; c) M. Lista, E. Orentas, J.
Areephong, P. Charbonnaz, A. Wilson, Y. Zhao, A. Bolag, G.
Sforazzini, R. Turdean, H. Hayashi, Y. Domoto, A. Sobczuk, N.
Sakai, S. Matile, Org. Biomol. Chem. 2013, 11, 1754 – 1765.
[4] a) L. M. Greig, D. Philp, Chem. Soc. Rev. 2001, 30, 287 – 302;
b) E. Opsitnick, D. Lee, Chem. Eur. J. 2007, 13, 7040 – 7049; c) K.
[12] a) R. A. Bilbeisi, J. K. Clegg, N. Elgrishi, X. de Hatten, M.
Devillard, B. Breiner, P. Mal, J. R. Nitschke, J. Am. Chem. Soc.
2012, 134, 5110 – 5119; b) I. A. Riddell, M. M. J. Smulders, J. K.
Clegg, Y. R. Hristova, B. Breiner, J. D. Thoburn, J. R. Nitschke,
Nat. Chem. 2012, 4, 751 – 756; c) C. Browne, S. Brenet, J. K.
Clegg, J. R. Nitschke, Angew. Chem. 2013, 125, 1998 – 2002;
Angew. Chem. Int. Ed. 2013, 52, 1944 – 1948; d) I. A. Riddell,
Y. R. Hristova, J. K. Clegg, C. S. Wood, B. Breiner, J. R.
Nitschke, J. Am. Chem. Soc. 2013, 135, 2723 – 2733.
[13] a) D. Schultz, J. R. Nitschke, J. Am. Chem. Soc. 2006, 128, 9887 –
9892; b) V. E. Campbell, X. de Hatten, N. Delsuc, B. Kauffmann,
I. Huc, J. R. Nitschke, Nat. Chem. 2010, 2, 684 – 687; c) Y. R.
Hristova, M. M. J. Smulders, J. K. Clegg, B. Breiner, J. R.
Nitschke, Chem. Sci. 2011, 2, 638 – 641; d) W. Meng, T. K.
Ronson, J. K. Clegg, J. R. Nitschke, Angew. Chem. 2013, 125,
1051 – 1055; Angew. Chem. Int. Ed. 2013, 52, 1017 – 1021.
[14] X-ray diffraction was done using synchrotron radiation at
Diamond Light Source, see H. Nowell, S. A. Barnett, K. E.
Christensen, S. J. Teat, D. R. Allan, J. Synchrotron Radiat. 2012,
19, 435 – 441.
[15] CCDC 934781 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.
[16] a) S. Mirtschin, A. Slabon-Turski, R. Scopelliti, A. H. Velders, K.
Severin, J. Am. Chem. Soc. 2010, 132, 14004 – 14005; b) Y.-F.
Han, G.-X. Jin, Chem. Asian J. 2011, 6, 1348 – 1352.
[17] For previous reports on this strategy see: a) ref. 12a; b) M.
Scherer, D. L. Caulder, D. W. Johnson, K. N. Raymond, Angew.
Chem. 1999, 111, 1689 – 1694; Angew. Chem. Int. Ed. 1999, 38,
1587 – 1592; c) S. Hiraoka, T. Yi, M. Shiro, M. Shionoya, J. Am.
Chem. Soc. 2002, 124, 14510 – 14511; d) S. Hiraoka, K. Harano,
M. Shiro, M. Shionoya, Angew. Chem. 2005, 117, 2787 – 2791;
Angew. Chem. Int. Ed. 2005, 44, 2727 – 2731; e) X. Zhang, X.-P.
Zhou, D. Li, Cryst. Growth Des. 2006, 6, 1440 – 1444; f) K.
Harano, S. Hiraoka, M. Shionoya, J. Am. Chem. Soc. 2007, 129,
5300 – 5301; g) M. Han, J. Hey, W. Kawamura, D. Stalke, M.
Shionoya, G. H. Clever, Inorg. Chem. 2012, 51, 9574 – 9576; h) R.
Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A.
ˇ
´
Osowska, O. S. Miljanic, Angew. Chem. 2011, 123, 8495 – 8499;
Angew. Chem. Int. Ed. 2011, 50, 8345 – 8349; d) E. Krieg, B.
Rybtchinski, Chem. Eur. J. 2011, 17, 9016 – 9026; e) Z. Qi, P.
Malo de Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz,
M. Gradzielski, C. A. Schalley, Chem. Sci. 2012, 3, 2073 – 2082;
f) C. J. Kloxin, C. N. Bowman, Chem. Soc. Rev. 2013, 42, 7161 –
7173.
[5] a) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor,
J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652 – 3711;
b) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem.
2009, 121, 3470 – 3490; Angew. Chem. Int. Ed. 2009, 48, 3418 –
3438; c) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev.
2011, 111, 6810 – 6918; d) E. Moulin, G. Cormos, N. Giuseppone,
Chem. Soc. Rev. 2012, 41, 1031 – 1049; e) T. K. Ronson, S. Zarra,
S. P. Black, J. R. Nitschke, Chem. Commun. 2013, 49, 2476 –
2490; f) M. Mastalerz, Synlett 2013, 781 – 786.
[6] a) B. Hasenknopf, J.-M. Lehn, B. O. Kneisel, G. Baum, D.
Fenske, Angew. Chem. 1996, 108, 1987 – 1990; Angew. Chem. Int.
Ed. Engl. 1996, 35, 1838 – 1840; b) K. S. Chichak, S. J. Cantrill,
A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood, J. F.
Stoddart, Science 2004, 304, 1308 – 1312; c) S. Bonnet, J.-P.
Collin, M. Koizumi, P. Mobian, J.-P. Sauvage, Adv. Mater. 2006,
18, 1239 – 1250; d) Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S.
Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010,
328, 1144 – 1147; e) A. Stephenson, S. P. Argent, T. Riis-Johan-
nessen, I. S. Tidmarsh, M. D. Ward, J. Am. Chem. Soc. 2011, 133,
858 – 870; f) Z. Zhao, Y.-R. Zheng, M. Wang, J. B. Pollock, P. J.
Stang, Inorg. Chem. 2010, 49, 8653 – 8655; g) F. Li, J. K. Clegg,
L. F. Lindoy, R. B. Macquart, G. V. Meehan, Nat. Commun.
2011, 2, 205 – 207; h) N. Ponnuswamy, F. B. L. Cougnon, J. M.
Clough, G. D. Pantos¸, J. K. M. Sanders, Science 2012, 338, 783 –
785; i) J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K.
Rissanen, D. Schultz, Nat. Chem. 2012, 4, 15 – 20.
4
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2013, 52, 1 – 6
These are not the final page numbers!