Please do not adjust margins
Dalton Transactions
Page 8 of 10
ARTICLE
Journal Name
1
(45% yield). H NMR (500 MHz, DMSO): δ 6.74 (s, 2H), 5.81 (s,
4H). GC-MS m/z: 166.03 [M]+ (calcd: 166.14).
Acknowledgements
DOI: 10.1039/C8DT00665B
This work was supported by the National Natural Science
Foundation of China (91333201), the National Basic Research
Program of China (2015CB655003), Program for Chang Jiang
Scholars and Innovative Research Team in University (No.
IRT101713018).
Synthesis of 4-(hexyloxy)-2-hydroxybenzaldehyde 2,4-
dihydroxybenzaldehyde (2 g, 14.5 mmol), 1-bromohexane (2.6
g, 16 mmol), KHCO3 (2.2 g, 21.7 mmol) and catalytic amount of
KI (0.1 g) were mixed in dry acetone (100 mL) and the mixture
was refluxed for 48 h. It was then filtered to remove the
insoluble solid. The warm solution was neutralized with dilute
hydrochloric acid and extracted twice with CH2Cl2 (100 mL). The
combined extracts were concentrated to give a purple solid. The
product was purified by column chromatography using silica gel
(200–300 mesh) eluting with a mixture of dichloromethane and
petroleum (v/v=1:1) followed by evaporation of solvent to yield
colourless oily product (2.5 g, 78%). 1H NMR (500 MHz, CDCl3):
δ 11.47 (s, 1H), 9.70 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 6.53 (d, J =
8.7 Hz, 1H), 6.41 (s, 1H), 4.00 (t, J = 6.5 Hz, 2H), 1.86 – 1.73 (m,
2H), 1.51 – 1.30 (m, 6H), 0.91 (t, J = 6.3 Hz, 3H). GC-MS m/z:
222.13 [M]+ (calcd: 222.19).
Synthesis of [N,N-Bis(4-hexyloxy-2-hydroxybenzylidene)-5,6-
benzo[c][1,2,5]thiadiazole-diaminato]ZnII (BTZn) A mixture of
4-(hexyloxy)-2-hydroxybenzaldehyde (444 mg, 2.0 mmol),
benzo[c][1,2,5]thiadiazole-5,6-diamine (166 mg, 1.0 mmol), and
zinc acetate dihydrate (220 mg, 1.0 mmol) in ethanol (40 mL)
was heated at reflux with stirring for 3 h under a nitrogen
atmosphere. After cooling to room temperature, the resulting
precipitates were collected by filtration and then crystallized
from ethanol/dichloromethane (v/v=3:1). The yellow crystalline
powder was dried in vacuum (80 °C, 10−2 Torr) for 5 h and finally
Notes and references
1
a) Z. Bao, MRS Bull., 2016, 41, 897; b) D. Genovese, A.
Aliprandi, E. A. Prasetyanto, M. Mauro, M. Hirtz, H. Fuchs, Y.
Fujita, H. Uji-I, S. Lebedkin, M. Kappes and L. De Cola, Adv.
Funct. Mater., 2016, 26, 5271; c) S. Cho, S. Kang, A. Pandya, R.
Shanker, Z. Khan, Y. Lee, J. Park, S. L. Craig and H. Ko, ACS Nano,
2017, 11, 4346; d) S. Hirata and T. Watanabe, Adv. Mater.,
2006, 18, 2725.
2
a) Y. Sagara and T. Kato, Nat. Chem., 2009,
S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y.
Shimoikeda and S. Yamaguchi, J. Am. Chem. Soc., 2013, 135
10322; c) C. E. Olson, M. J. R. Previte and J. T. Fourkas, Nat.
Mater., 2002, , 225; d) M. Irie, T. Fukaminato, T. Sasaki, N.
Tamai and T. Kawai, Nature, 2002, 420, 759; e) A. Kishimura,
T. Yamashita, K. Yamaguchi and T. Aida, Nat. Mater., 2005,
1, 605; b) K. Nagura,
,
1
4
,
546; f) M. Kinami, B. R. Crenshaw and C. Weder, Chem. Mater.,
2006, 18, 946.
3
a) A. L. Balch, Angew. Chem., Int. Ed., 2009, 48, 2641; b) X.
Zhang, Z. Chi, Y. Zhang, S. Liu and J. Xu, J. Mater. Chem. C, 2013,
1
, 3376.
4
5
Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu and J.
Xu, Chem. Soc. Rev., 2012, 41, 3878.
a) T. Seki, N. Tokodai, S. Omagari, T. Nakanishi, Y. Hasegawa,
T. Iwasa, T. Taketsugu and H. Ito, J. Am. Chem. Soc., 2017, 139
,
heated at 165
℃ for 10 min in air to offer orange solid product
(572 mg, 90%). 1H NMR (500 MHz, DMSO-d6): δ 9.04 (s, 2H), 8.34
(s, 2H), 7.35 (d, J = 9.4 Hz, 2H), 6.21 – 6.18 (m, 4H), 4.00 (t, J =
6.5 Hz, 4H), 1.77 – 1.69 (m, 4H), 1.47 – 1.39 (m, 4H), 1.37 – 1.29
(m, 8H), 0.90 (t, J = 6.9 Hz, 6H). 13C NMR (125 MHz, DMSO-d6):
δ 175.97, 165.77, 164.01, 153.68, 145.03, 138.48, 114.93,
105.64, 105.26, 104.97, 67.81, 31.49, 29.01, 25.68, 22.55, 14.40.
GC-MS m/z: 635.90 [M]+ (calcd: 636.17). MOLDI-TOF-MS m/z:
636.66 [M]+, 1272.34 [(M)2]+. Elemental analysis calculated for
C32H36N4O4SZn): C, 60.23; H, 5.69; N, 8.78; S, 5.02; Found: C,
59.79; H, 5.65; N, 8.53; S, 4.78.
6514; b) Y.-A. Lee and R. Eisenberg, J. Am. Chem. Soc., 2003,
125, 7778; c) J. Schneider, Y.-A. Lee, J. Pꢀrez, W. W. Brennessel,
C. Flaschenriem and R. Eisenberg, Inorg. Chem., 2008, 47, 957;
d) A. Laguna, T. Lasanta, J. M. Lopez-de-Luzuriaga, M. Monge,
P. Naumov and M. E. Olmos, J. Am. Chem. Soc., 2010, 132, 456;
e) M. Osawa, I. Kawata, S. Igawa, M. Hoshino, T. Fukunaga and
D. Hashizume, Chem.
- Eur. J., 2010, 16, 12114; f) I. O.
Koshevoy, C.-L. Lin, A. J. Karttunen, M. Haukka, C.-W. Shih, P.-
T. Chou, S. P. Tunik and T. A. Pakkanen, Chem. Commun., 2011,
47, 5533; g) H. Ito, M. Muromoto, S. Kurenuma, S. Ishizaka, N.
Kitamura, H. Sato and T. Seki, Nat. Commun., 2013, 4, 2009.
6
a) L. Liu, X. Wang, N. Wang, T. Peng and S. Wang, Angew.
Chem. Int. Ed., 2017, 56, 9160; b) V. N. Kozhevnikov, B.
Donnio and D. W. Bruce, Angew. Chem., Int. Ed., 2008, 47
,
DFT Calculations
6286; c) T. Abe, T. Itakura, N. Ikeda and K. Shinozaki, Dalton
Trans., 2009, 711; d) M. Krikorian, S. Liu and T. M. Swager, J.
Am. Chem. Soc., 2014, 136, 2952; e) X. Zhang, J.-Y. Wang, J. Ni,
L.-Y. Zhang and Z.-N. Chen, Inorg. Chem., 2012, 51, 5569; e) L.-
M. Huang, G.-M. Tu, Y. Chi, W.-Y. Hung, Y.-C. Song, M.-R.
Tseng, P.-T. Chou, G.-H. Lee, K.-T. Wong, S.-H. Cheng and W.-
The ground state geometries were fully optimized by the
density functional theory (DFT)24 method with Becke three-
parameter hybrid exchange and the Lee−Yang−Parr correlation
functional25 (B3LYP) using the Gaussian 09 software package.26
The 6-311++G(d,p)27 basis set for C, H, N, and O atoms and
LANL2DZ28 basis set for Zn atom were employed. This basis set
was adopted as it was widely used for calculating geometries
and frontier orbital distributions of organometallic complexes
and it provided reliable results.29
S. Tsai, J. Mater. Chem. C, 2013,
a) S. Perruchas, X. Le Goff, S. Maron, I. Maurin, F. Guillen, A.
Garcia, T. Gacoin and J. Boilot, J. Am. Chem. Soc., 2010,132
1, 7582.
7
,
10967; b) Q. Benito, X. F. Le Goff, S. Maron, A. Fargues, A.
Garcia, C. Martineau, F. Taulelle, S. Kahlal, T. Gacoin, J.-P.
Boilot and S. Perruchas, J. Am. Chem. Soc., 2014, 136, 11311;
c) B. Huitorel, H. E. Moll, M. Cordier, A. Fargues, A. Garcia, F.
Massuyeau, C. Martineau-Corcos, T. Gacoin and S. Perruchas,
Inorg. Chem., 2017, 56, 12379; d) M. S. Deshmukh, A. Yadav,
R. Pant and R. Boomishankar, Inorg. Chem., 2015, 54, 1337; e)
Q. Xiao, J. Zheng, M. Li, S.-Z. Zhan, J.-H. Wang and D. Li, Inorg.
Chem., 2014, 53, 11604.
Organogelation
The suspensions of certain amount of the complex in various
organic solvents were heated in a screw-cap vial until the solid
dissolved. After cooling to room temperature, gelation was
considered successful if no flow was observed upon inverting
the vial.
8
a) T. Tsukuda, M. Kawase, A. Dairiki, K. Matsumoto and T.
Tsubomura, Chem. Commun., 2010, 46
, 1905; b) M.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins