Organic Letters
Letter
Libraries: A Chemoinformatics Enabled Approach to Evaluate and
Advance Synthetic Methods. Chem. Sci. 2016, 7, 2604−2613.
(c) Collins, K. D.; Gensch, T.; Glorius, F. Contemporary Screening
Approaches to Reaction Discovery and Development. Nat. Chem.
2014, 6, 859−871. (d) Isbrandt, E. S.; Sullivan, R. J.; Newman, S. G.
High Throughput Strategies for the Discovery and Optimization of
Catalytic Reactions. Angew. Chem., Int. Ed. 2019, 58, 7180−7191.
(5) (a) Cronin, L.; Mehr, S. H. M.; Granda, M. Catalyst: The
Metaphysics of Chemical Reactivity. Chem. 2018, 4, 1759−1761.
(b) Henson, A. B.; Gromski, P. S.; Cronin, L. Designing Algorithms
to Aid Discovery by Chemical Robots. ACS Cent. Sci. 2018, 4, 793−
804. (c) Reymond, J.-L.; van Deursen, R.; Blum, L. C.; Ruddigkeit, L.
Chemical Space as a Source for New Drugs. MedChemComm 2010, 1,
30−38. (d) Kirkpatrick, P.; Ellis, C. Chemical Space. Nature 2004,
432, 823.
ultimately expanding the toolbox of organic chemistry for
highly efficient and straightforward catalytic protocols.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, characterization data, mechanistic
experiments, and copies of NMR spectra of new
Accession Codes
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
́
́
(6) (a) Hopkinson, M. N.; Gomez-Suarez, A.; Teders, M.; Sahoo, B.;
Glorius, F. Accelerated Discovery in Photocatalysis using a
Mechanism-Based Screening Method. Angew. Chem., Int. Ed. 2016,
̈
55, 4361−4366. (b) Teders, M.; Henkel, C.; Anhauser, L.; Strieth-
́
́
Kalthoff, F.; Gomez-Suarez, A.; Kleinmans, R.; Kahnt, A.;
Rentmeister, A.; Guldi, D.; Glorius, F. The Energy-Transfer-Enabled
Biocompatible Disulfide−Ene Reaction. Nat. Chem. 2018, 10, 981−
988.
AUTHOR INFORMATION
Corresponding Authors
■
(7) (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Discovery of
an α-Amino C−H Arylation Reaction Using the Strategy of
Accelerated Serendipity. Science 2011, 334, 1114−1117. (b) Robbins,
D. W.; Hartwig, J. F. A Simple, Multidimensional Approach to High-
Throughput Discovery of Catalytic Reactions. Science 2011, 333,
1423−1427. (c) Troshin, K.; Hartwig, J. F. Snap Deconvolution: An
Informatics Approach to High-Throughput Discovery of Catalytic
Reactions. Science 2017, 357, 175−181.
ORCID
(8) (a) Shevlin, M. Practical High-Throughput Experimentation for
Chemists. ACS Med. Chem. Lett. 2017, 8, 601−607. (b) Kuijpers, K.
́
́
́
̈
̈
P.; Bottecchia, C.; Cambie, D.; Drummen, K.; Konig, N. J.; Noel, T. A
Fully Automated Continuous-Flow Platform for Fluorescence
Quenching Studies and Stern-Volmer Analysis. Angew. Chem., Int.
Ed. 2018, 57, 11278−11282. (c) Schneider, G. Automating Drug
Discovery. Nat. Rev. Drug Discovery 2018, 17, 97−113.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(9) (a) Markert, C.; Pfaltz, A. Screening of Chiral Catalysts and
Catalyst Mixtures by Mass Spectrometric Monitoring of Catalytic
Intermediates. Angew. Chem., Int. Ed. 2004, 43, 2498−2500.
(b) Markert, C.; Rosel, P.; Pfaltz, A. Combinatorial Ligand
Development Based on Mass Spectrometric Screening and a Double
We thank the Deutsche Forschungsgemeinschaft (Leibniz
Award), the Alexander von Humboldt Foundation (E.A.S.),
and SusChemSys 2.0 (M.T.) for generous financial support.
We are also grateful to T. Wagener, F. Strieth-Kalthoff, and L.
̈
̈
̈
Anhauser (all WWU Munster) for experimental support and
helpful discussions.
Mass-Labeling Strategy. J. Am. Chem. Soc. 2008, 130, 3234−3235.
̈
(10) Liedtke, T.; Spannring, P.; Riccardi, L.; Gansauer, A.
Mechanism-Based Condition Screening for Sustainable Catalysis in
Single-Electron Steps by Cyclic Voltammetry. Angew. Chem., Int. Ed.
2018, 57, 5006−5010.
REFERENCES
■
(1) (a) Trost, B. M. Selectivity: A Key to Synthetic Efficiency.
Science 1983, 219, 245−250. (b) Wender, P.; Miller, B. L. Synthesis at
the Molecular Frontier. Nature 2009, 460, 197−201. (c) Nicolaou, K.
C. Organic Synthesis: The Art and Science of Replicating the
Molecules of Living Nature and Creating others like them in the
Laboratory. Proc. R. Soc. London, Ser. A 2014, 470, 20130690.
(d) Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice.
Chem. Soc. Rev. 2010, 39, 301−312.
́
́
(11) (a) Teders, M.; Pitzer, L.; Gomez-Suarez, A.; Hopkinson, M.
N.; Glorius, F. Diverse Visible-Light-Promoted Functionalizations of
Benzotriazoles Inspired by Mechanism-Based Luminescence Screen-
ing. Angew. Chem., Int. Ed. 2017, 56, 902−906. (b) Teders, M.; Pitzer,
L.; Buss, S.; Glorius, F. Regioselective Synthesis of 2-Substituted
Indoles from Benzotriazoles and Alkynes by Photoinitiated De-
nitrogenation. ACS Catal. 2017, 7, 4053−4056.
(12) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible
Light Photoredox Catalysis with Transition Metal Complexes:
Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322−
5363. (b) Romero, N.; Nicewicz, D. A. Organic Photoredox Catalysis.
Chem. Rev. 2016, 116, 10075−10166. (c) Skubi, K. L.; Blum, T. R.;
Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis.
Chem. Rev. 2016, 116, 10035−10074. (d) Strieth-Kalthoff, F.; James,
M. J.; Teders, M.; Pitzer, L.; Glorius, F. Energy Transfer Catalysis
Mediated by Visible Light: Principles, Applications, Directions. Chem.
Soc. Rev. 2018, 47, 7190−7202. (e) Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-
Q.; Xiao, W.-J. Visible-Light-Induced Organic Photochemical
Reactions through Energy-Transfer Pathways. Angew. Chem., Int. Ed.
2019, 58, 1586−1604.
(2) (a) Applications of Transition Metal Catalysis in Drug Discovery
and Development: An Industrial Perspective; Crawley, M. L., Trost, B.
M., Eds.; John Wiley & Sons: Hoboken, NJ, 2012. (b) Blakemore, D.
C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D.
M.; Wood, A. Organic Synthesis Provides Opportunities to Transform
Drug Discovery. Nat. Chem. 2018, 10, 383−394.
(3) The Logic of Chemical Synthesis; Corey, E. J., Cheng, X.-M., Eds.;
John Wiley & Sons: Hoboken, NJ, 1995.
(4) (a) Handbook of Combinatorial Chemistry: Drugs, Catalysts,
Materials; Nicolaou, K. C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH:
Weinheim, Germany, 2002. (b) Kutchukian, P. S.; Dropinski, J. F.;
Dykstra, K. D.; Li, B.; DiRocco, D. A.; Streckfuss, E. C.; Campeau, L.-
C.; Cernak, T.; Vachal, P.; Davies, I. W.; et al. Chemistry Informer
E
Org. Lett. XXXX, XXX, XXX−XXX