4
422
S. Gowrisankar et al. / Tetrahedron Letters 48 (2007) 4419–4422
H), 7.52 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.94
1
5. For the synthesis of similar pyridoisoindole derivatives, see:
(a) Marion, F.; Courillon, C.; Malacria, M. Org. Lett. 2003,
5, 5095–5097; (b) Ha, D.-C.; Yun, C.-S.; Yu, E. Tetrahe-
dron Lett. 1996, 37, 2577–2580; (c) Othman, M.; Pigeon, P.;
Decroix, B. Tetrahedron 1998, 54, 8737–8744; (d) Mange-
ney, P.; Pays, C. Tetrahedron Lett. 2003, 44, 5719–5722; (e)
Pays, C.; Mangeney, P. Tetrahedron Lett. 2001, 42, 589–
592; (f) Zhang, W.; Zheng, A.; Liu, Z.; Yang, L.; Liu, Z.
Tetrahedron Lett. 2005, 46, 5691–5694; (g) Zhang, W.;
Pugh, G. Tetrahedron 2003, 59, 3009–3018; (h) Varlamov,
A. V.; Zubkov, F. I.; Boltukhina, E. V.; Sidorenko, N. V.;
Borisov, R. S. Tetrahedron Lett. 2003, 44, 3641–3643.
6. For the synthesis of eight-membered ring compounds via
radical cyclizations, see: (a) Bremner, J. B.; Sengpracha, W.
Tetrahedron 2005, 61, 941–953; (b) Lee, E.; Yoon, C. H.;
Lee, T. H.; Kim, S. Y.; Ha, T. J.; Sung, Y.-S.; Park, S.-H.;
Lee, S. J. Am. Chem. Soc. 1998, 120, 7469–7478; (c) Lang,
S.; Corr, M.; Muir, N.; Khan, T. A.; Schonebeck, F.;
Murphy, J. A.; Payne, A. H.; Williams, A. C. Tetrahedron
Lett. 2005, 46, 4027–4030; (d) Kaim, L. E.; Grimaud, L.;
Miranda, L. D.; Vieu, E. Tetrahedron Lett. 2006, 47, 8259–
8261.
1
3
(
d, J = 7.5 Hz, 1H), 8.35 (s, 1H); C NMR (125 MHz,
CDCl ) d 13.90, 38.11, 41.12, 57.12, 60.04, 115.50, 122.23,
3
1
1
24.57, 126.42, 126.73, 128.50, 128.94, 131.17, 131.80,
33.07, 144.10, 144.22, 165.45, 166.21; LCMS m/z 333
+
(
M ). Anal. Calcd for C21
H19NO
3
: C, 75.66; H, 5.74; N,
4.20. Found: C, 75.45; H, 5.87; N, 4.03.
Compound 5b: 56%; white solid, mp 189–191 ꢁC; IR (KBr)
ꢀ
1
1
2
1
4
7
1
5
1
1
925, 1714, 1261 cm ; H NMR (300 MHz, CDCl ) d
3
.62–1.64 (m, 1H), 2.80–2.84 (m, 1H), 3.57 (s, 3H), 4.02–
.08 (m, 1H), 4.73–4.78 (m, 1H), 7.16–7.31(m, 5H), 7.45–
.65 (m, 3H), 7.94 (d, J = 7.5 Hz, 1H), 8.36 (d, J = 1.5 Hz,
H); C NMR (75 MHz, CDCl ) d 38.20, 41.11, 51.31,
3
7.12, 115.17, 122.28, 124.67, 126.55, 126.73, 128.61,
13
29.02, 131.23, 132.10, 133.15, 143.98, 144.26, 165.49,
66.61; LCMS m/z 319 (M ). Anal. Calcd for
+
20 3
C H17NO : C, 75.22; H, 5.37; N, 4.39. Found: C, 75.09;
H, 5.56; N, 4.36.
Compound 5c: 63%; white solid, mp 193–195 ꢁC; IR (KBr)
ꢀ
1
1
2
1
4
6
7
950, 1712, 1275 cm ; H NMR (300 MHz, CDCl ) d
3
.52–1.64 (m, 1H), 2.80–2.88 (m, 1H), 3.59 (s, 3H), 4.02–
.11 (m, 1H), 4.72–4.77 (m, 1H), 6.86–6.88 (m, 2H), 6.94–
.97 (m, 1H), 7.20–7.27 (m, 1H), 7.46–7.55 (m, 2H), 7.61–
7. Crystal data of compound 5a: solvent of crystal growth
1
3
.66 (m, 1H), 7.93 (d, J = 7.5 Hz, 1H), 8.37 (s, 1H);
C
(hexanes/CH Cl , 95:5); empirical formula C21H19NO ,
2 2 3
3
NMR (75 MHz, CDCl ) d 37.93, 40.79, 51.32, 56.90,
Fw = 333.37, crystal dimensions 0.60 · 0.20 · 0.02 mm ,
3
˚
1
1
1
1
13.28, 113.53, 113.56, 113.82, 114.31, 122.28, 122.33,
22.37, 124.66, 129.06, 129.98, 130.08, 131.09, 132.46,
33.21, 144.07, 146.59, 146.68, 161.27, 164.53, 165.39,
66.38. Anal. Calcd for C H FNO : C, 71.21; H, 4.78;
monoclinic, space group P2(1)/c, a = 17.9110(19) A, b =
˚
˚
6.3191(7) A, c = 15.3166(17) A, a = 90ꢁ, b = 94.424(2)ꢁ,
˚
3
3
c = 90ꢁ, V = 1728.4(3) A , Z = 4, Dcalcd = 1.281 mg/m .
˚
F
000
= 704, MoKa (k = 0.71073 A), R = 0.0747, wR =
1 2
2
0
16
3
N, 4.15. Found: C, 71.13; H, 4.97; N, 4.38.
0.1718 (I > 2r(I)). We omitted hydrogen atoms for clarity
(Fig. 1). The X-ray data has been deposited in CCDC with
number 634382.
Compound 5d: 46%; white solid, mp 200–202 ꢁC; IR (KBr)
ꢀ1 1
2
909, 1714, 1263 cm ; H NMR (300 MHz, CDCl ) d 1.04
3
(
1
5
t, J = 6.9 Hz, 3H), 3.94–4.16 (m, 3H), 4.62 (dd, J = 2.4 Hz,
H), 5.24 (d, J = 3.6 Hz, 1H), 6.62 (s, 2H), 6.81–6.82 (m,
8. For the examples of intramolecular hydrogen transfer of
radical intermediates, see: (a) Dort, P. C. V.; Fuchs, P. L. J.
Org. Chem. 1997, 62, 7142–7147; (b) Curran, D. P.; Yang,
F.; Cheong, J.-H. J. Am. Chem. Soc. 2002, 124, 14993–
15000; (c) Zeng, L.; Kaoudi, T.; Schiesser, C. H. Tetrahe-
dron Lett. 2006, 47, 7911–7914; (d) Rancourt, J.; Gorys, V.;
Jolicoeur, E. Tetrahedron Lett. 1998, 39, 5339–5342; (e)
Amrein, S.; Bossart, M.; Vasella, T.; Studer, A. J. Org.
Chem. 2000, 65, 4218–4288; (f) Qian, X.; Cui, J.; Zhang, R.
Chem. Commun. 2001, 2656–2657; (g) Karady, S.; Cum-
mins, J. M.; Dannenberg, J. J.; del Rio, E.; Dormer, P. G.;
Marcune, B. F.; Reamer, R. A.; Sordo, T. L. Org. Lett.
2003, 5, 1175–1178; (h) Renaud, P.; Beaufils, F.; Feray, L.;
Schenk, K. Angew. Chem. 2003, 115, 4362–4365; (i) Clive,
D. L. J.; Yang, W.; MacDonald, A. C.; Wang, Z.; Cantin,
M. J. Org. Chem. 2001, 66, 1966–1983.
H), 6.96–6.98 (m, 3H), 7.18–7.45 (m, 3H), 7.74 (d,
1
3
J = 7.8 Hz, 1H), 8.47 (d, J = 2.1 Hz, 1H); C NMR
75 MHz, CDCl ) d 13.90, 45.63, 48.32, 60.25, 60.78,
15.21, 122.58, 124.28, 125.84, 126.71, 127.50, 127.77,
(
3
1
1
1
28.51, 131.41, 132.14, 132.78, 135.40, 140.71, 143.19,
66.97, 166.68 (two aromatic carbons were overlapped);
+
LCMS m/z 409 (M ).
Compound 5e: 49%; white solid, mp 211–213 ꢁC; IR (KBr)
2
ꢀ1 1
950, 1714, 1397 cm ; H NMR (300 MHz, CDCl ) d 3.60
3
(
s, 3H), 3.95 (dd, J = 3.9 Hz, 1H), 4.62 (dd, J = 2.3 Hz, 1H),
.25 (d, J = 3.9 Hz, 1H), 6.61 (s, 2H), 6.80–6.81 (m, 5H),
5
6
1
4
1
1
.93–7.00 (m, 3H), 7.26–7.46 (m, 3H), 7.74 (d, J = 7.8 Hz,
1
3
H), 8.48 (d, J = 2.4 Hz, 1H); C NMR (75 MHz, CDCl ) d
3
5.52, 48.36, 51.44, 60.72, 114.75, 122.59, 124.29, 125.89,
26.72, 127.54, 127.70, 127.76, 128.53, 131.36, 132.45,
32.82, 135.44, 140.52, 143.20, 165.98, 167.04 (one aromatic
9. The formation of compound 8 from 4f clearly stated that the
corresponding aryl radical must be generated in the reaction.
However, we could not explain the different reactivity of two
aryl radicals generated from 4a and 4f at this stage.
carbon was overlapped). Anal. Calcd for C H NO : C,
7
2
6
21
3
8.97; H, 5.35; N, 3.54. Found: C, 78.65; H, 5.37; N, 3.39.