Arylbiphenylene Atropisomers
CHART 1
processes were not observed, even when cooling the sample to
-175 °C). Line shape simulation of the methyl signals as
function of temperature yielded the rate constants for the
interconversion of the major into the minor conformer; from
these values a free energy of activation (∆Gq)17 equal to 10.3
(8) (a) Cozzi, F.; Cinquini, M.; Annunziata, R.; Siegel, J. S. J. Am. Chem.
Soc. 1993, 115, 5330-5331. (b) Cozzi, F.; Ponzini, F.; Annunziata, R.;
Cinquini, M.; Siegel, J. S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1019-
1020. (c) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M. F. Tetrahedron
1996, 52, 8703-8706. (d) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M.
F. J. Org. Chem. 1996, 61, 7018-7021. (e) Thirsk, C.; Hawkes, G. E.;
Kroemer, R. T.; Liedl, K. R.; Loerting, T.; Nasser, R.; Pritchard, R. G.;
Steele, M.; Warren, J. E.; Whiting, A. J. Chem. Soc., Perkin Trans. 2 2002,
1510-1519. (f) Wolf, C.; Ghebremarian, B. T. Tetrahedron: Asymmetry
2002, 13, 1153-1156. (g) Tumambac, G. E.; Wolf, C. J. Org. Chem. 2004,
69, 2048.2055. (h) Tumambac, G. E.; Wolf, C. J. Org. Chem. 2005, 70,
2930-2938.
(9) Lai, J.-H. J. Chem. Soc., Perkin Trans. 1986, 2, 1667-1670.
(10) (a) House, H.; Hrabie, J. A.; Van Derveer, D. J. Org. Chem. 1986,
51, 920-929. (b) House, H.; Holt, J. T.; Van Derveer, D. J. Org. Chem.
1993, 58, 7516-7523. (c) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J.
Org. Chem. 2007, 72, 5391-5394.
(11) Cross, W.; Hawkes, G. E.; Kroemer, R. T.; Liedl, K. R.; Loerting,
T.; Nasser, R.; Pritchard, R. G.; Steele, M.; Watkinson, M.; Whiting, A. J.
Chem. Soc., Perkin Trans. 2001, 2, 459-467.
(12) Lai, Y.-H.; Chen, P. J. Chem. Soc., Perkin Trans. 1989, 2, 1665-
1670.
(13) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72,
10045-10050.
(14) Clough, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1976, 98, 1018-
1020.
(15) Gaussian 03, Revision D.01: Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.
K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian, Inc., Wallingford CT, 2004.
Results and Discussion
The compounds synthesized for this investigation are listed
in Chart 1.
As pointed out by Clough and Roberts,14 derivatives resem-
bling compound 1 can exist as three possible conformers,
depending on the relative positions of the two substituted aryl
groups. In the case of 1, DFT computations15 actually predict
the existence of three energy minima,16 corresponding to the
conformers displayed in Figure 1.
In the case of the less hindered m-tolyl biphenylene deriva-
tives13 mentioned above, the 90° torsion barrier interconverting
the anti-in into the anti-out conformers, as well as that
interconverting the two enantiomers of the syn conformer, are
sufficiently high as to allow an experimental NMR detection
of the corresponding exchange process. In the present case, on
the contrary, these barriers are predicted to be significantly lower
(1.7 kcal mol-1, according to DFT computations), so that the
90° torsion processes are much faster and only the 180° rotation,
which interconverts the rapidly exchanging anti conformers into
the rapidly exchanging syn enantiomers, displays a barrier (DFT
computed value of 10.5 kcal mol-1) high enough to make the
corresponding pathway accessible to a direct NMR detection.
1
Indeed, the H methyl signal of 1 broadens on cooling and
eventually splits, at -92 °C, into a pair of lines in a 60:40
proportion (Figure 2), one corresponding to the rapidly inter-
converting anti conformers and the other to the rapidly inter-
converting enantiomers of syn conformers: owing to the fast
90° torsion process mentioned above, both the anti and the syn
conformers display a single methyl line (other exchange
(16) In a theoretical paper describing compounds analogous to 1 only
one of the two possible anti conformers was, inexplicably, considered
(see: Bigdeli, M. A.; Moradi, S.; Nemati, F. J. Mol. Structure Theochem.
2007, 807, 125-135).
(17) As often observed in conformational processes, the free energy of
activation was found independent of temperature within the errors, indicating
a negligible value of ∆Sq. See, for instance: Dondoni, A.; Lunazzi, L.;
Giorgianni, P.; Macciantelli, D. J. Org. Chem. 1975, 20, 2979. Hoogosian,
S.; Bushweller, C. H.; Anderson, W. G.; Kigsley, G. J. Phys. Chem. 1976,
80, 643; Lunazzi, L.; Cerioni, G.; Ingold, K. U. J. Am. Chem. Soc. 1976,
98, 7484. Lunazzi, L.; Dondoni, A.; Barbaro, G.; Macciantelli, D.
Tetrahedron Lett. 1977, 18, 1079. Forlani, L.; Lunazzi, L.; Medici, A.
Tetrahedron Lett. 1977, 18, 4525. Bernardi, F.; Lunazzi, L.; Zanirato, P.;
Cerioni, G. Tetrahedron 1977, 33, 1337. Lunazzi, L.; Magagnoli, C.; Guerra,
M.; Macciantelli, D. Tetrahedron Lett. 1979, 20, 3031. Cremonini, M. A.;
Lunazzi, L.; Placucci, G.; Okazaki, R.; Yamamoto, G. J. Am. Chem. Soc.
1990, 112, 2915. Anderson, J. E.; Tocher, D. A.; Casarini, D.; Lunazzi, L.
J. Org. Chem. 1991, 56, 1731. Gribble, G. W.; Olson, E. R.; Brown, J. H.;
Bushweller, C. H. J. Org. Chem. 1993, 58, 1631. Borghi, R.; Lunazzi, L.;
Placucci, G.; Cerioni, G.; Foresti, E.; Plumitallo, A. J. Org. Chem. 1997,
62, 4924. Garcia, M. B.; Grilli, S.; Lunazzi, L.; Mazzanti, A.; Orelli, L. R.
J. Org. Chem. 2001, 66, 6679. Garcia, M. B.; Grilli, S.; Lunazzi, L.;
Mazzanti, A.; Orelli, L. R. Eur. J. Org. Chem. 2002, 4018. Anderson, J.
E.; de Meijere, A.; Kozhushkov, S. I.; Lunazzi, L.; Mazzanti, A. J. Am.
Chem. Soc. 2002, 124, 6706. Casarini, D.; Rosini, C.; Grilli, S; Lunazzi,
L.; Mazzanti, A. J. Org. Chem. 2003, 68, 1815. Casarini, D.; Grilli, S.;
Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2004, 69, 345. Bartoli, G.; Lunazzi,
L.; Massacesi, M.; Mazzanti, A. J. Org. Chem. 2004, 69, 821. Casarini,
D.; Coluccini, C.; Lunazzi, L.; Mazzanti, A.; Rompietti, R. J. Org. Chem.
2004, 69, 5746.
(5) (a) Saenger, W. Principles of Nucleic Acid Structures; Springer-
Verlag: New York, 1984. (b) Burley, S. K.; Petsko, G. A. Science 1985,
229, 23-28. (c) Hunter, C. A.; Singh, J.; Thornton, J. M. J. Mol. Biol.
1991, 218, 837-846. (d) Hunter, C. A. J. Mol. Biol. 1993, 230, 1025-
1054. (e) Schall, O. F.; Gokel, G. W. J. Org. Chem. 1996, 61, 1149-1458.
(f) Guckian, K. M.; Schweitzer, B. A.; Ren, R. X. F.; Sheils, C. J.; Paris,
P. L.; Tanmasseri, D. C.; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 8182-
8183. (g) Ho, T. L.; Liao, P. Y.; Wang, K. T. J. Chem. Soc., Chem. Commun.
1995, 2437-2438. (h) Ranganathan, D.; Haridas, V.; Gilardi, R.; Karle, J.
L. J. Am. Chem. Soc. 1998, 120, 10793-10800. (i) Chelli, F.; Gervasio, F.
L.; Procacci, P.; Schettino, V. J. Am. Chem. Soc. 2002, 124, 6133-6143.
(j) Chelli, F.; Gervasio, F. L.; Procacci, P.; Schettino, V. Proteins 2002,
48, 117-125.
(6) (a) Dahl, T. Acta Chem. Scand. 1994, 48, 95-106. (b) Williams, J.
H. Acc. Chem. Res. 1993, 26, 593-598. (c) Anderson, H. L.; Bashall, A;
Henrick, K.; McPartlin, M.; Sanders, J. K. M. Angew. Chem., Int. Ed. Engl.
1994, 33, 429-431. (d) Dance, I.; Scuddar, M. Chem. Eur. J. 1996, 2,
481-486. (e) Wang, Z. H.; Hirose, T.; Hiratani, K.; Yang, Y.; Kasuga, K.
Chem. Lett. 1996, 603-604. (f) Martin, C. B.; Patrick, B. O.; Cammers-
Goodwin, A. J. Org. Chem. 1999, 64, 7568-7578. (g) Nakamura, Y.;
Suzuki, H.; Hayashida, Y.; Kudo, T.; Nishimura, J. Liebigs Ann./Recueil
1997, 1769-1776.
(7) (a) Mitchell, R. H.; Yan, J. S. H. Can. J. Chem. 1980, 58, 2584-
2587. (b) Mazzanti, A.; Lunazzi, L.; Minzoni, M.; Anderson, J. E. J. Org.
Chem. 2006, 71, 5474-5481.
J. Org. Chem, Vol. 73, No. 6, 2008 2199