Inorganic Chemistry
Article
Functionalized Metal−Organic Framework. Angew. Chem., Int. Ed.
2017, 56, 14982−14986. (c) Murphy, M. J.; Zenere, K. A.; Ragon, F.;
Southon, P. D.; Kepert, C. J.; Neville, S. M. Guest Programmable
Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material. J.
Am. Chem. Soc. 2017, 139, 1330−1335. (d) Sciortino, N. F.; Ragon,
F.; Zenere, K. A.; Southon, P. D.; Halder, G. J.; Chapman, K. W.;
Spin Transition Triggered by a Structural Phase Transition. Angew.
Chem., Int. Ed. 2005, 44, 4899−4903. (b) Hayami, S.; Murata, K.;
Urakami, D.; Kojima, Y.; Akita, M.; Inoue, K. Dynamic structural
conversion in a spin-crossover cobalt(II) compound with long alkyl
chains. Chem. Commun. 2008, 6510−6512. (c) Hayami, S.; Urakami,
D.; Kojima, Y.; Yoshizaki, H.; Yamamoto, Y.; Kato, K.; Fuyuhiro, A.;
Kawata, S.; Inoue, K. Stabilization of Long-Lived Metastable State in
Long Alkylated Spin-Crossover Cobalt(II) Compound. Inorg. Chem.
2010, 49, 1428−1432. (d) Guo, Y.; Yang, X.-L.; Wei, R.-J.; Zheng, L.-
S.; Tao, J. Spin Transition and Structural Transformation in a
Mononuclear Cobalt(II) Complex. Inorg. Chem. 2015, 54, 7670−
7672.
́
Pineiro-Lopez, L.; Real, J. A.; Kepert, C. J.; Neville, S. M. Exploiting
̃
Pressure to Induce a “Guest-Blocked” Spin Transition in a Framework
Material. Inorg. Chem. 2016, 55, 10490−10498. (e) Huang, W.; Shen,
F.; Zhang, M.; Wu, D.; Pana, F.; Sato, O. Room-temperature
switching of magnetic hysteresis by reversible single-crystal-to-single-
crystal solvent exchange in imidazole-inspired Fe(II) complexes.
Dalton Trans. 2016, 45, 14911−14918. (f) Southon, P. D.; Liu, L.;
Fellows, E. A.; Price, D. J.; Halder, G. J.; Chapman, K. W.; Moubaraki,
(11) (a) Cowan, M. G.; Olguín, J.; Narayanaswamy, S. J.; Tallon, L.;
Brooker, S. Reversible Switching of a Cobalt Complex by Thermal,
Pressure, and Electrochemical Stimuli: Abrupt, Complete, Hysteretic
Spin Crossover. J. Am. Chem. Soc. 2012, 134, 2892−2894. (b) Bhar,
K.; Khan, S.; Costa, J.; Ribas, J.; Roubeau, O.; Mitra, P.; Ghosh, B. K.
Crystallographic Evidence for Reversible Symmetry Breaking in a
Spin-Crossover d7 Cobalt(II) Coordination Polymer. Angew. Chem.,
Int. Ed. 2012, 51, 2142−2145. (c) Zarembowitch, J.; Kahn, O.
Magnetic Properties of Some Spin-Crossover, High-Spin, and Low-
Spin Cobalt(II) Complexes with Schiff Bases Derived from 3-
Formylsalicylic Acid. Inorg. Chem. 1984, 23, 589−593.
́
B.; Murray, K. S.; Letard, J.-F.; Kepert, C. J. Dynamic Interplay
between Spin-Crossover and Host-Guest Function in a Nanoporous
Metal-Organic Framework Material. J. Am. Chem. Soc. 2009, 131,
10998−11009. (g) Niel, V.; Thompson, A. L.; Munoz, M. C.; Galet,
A.; Goeta, A. E.; Real, J. A. Crystalline-State Reaction with Allosteric
Effect in Spin-Crossover, Interpenetrated Networks with Magnetic
and Optical Bistability. Angew. Chem., Int. Ed. 2003, 42, 3760−3763.
(7) (a) Bao, X.; Shepherd, H. J.; Salmon, L.; Molnr, G.; Tong, M.-L.;
Bousseksou, A. The Effect of an Active Guest on the Spin Crossover
Phenomenon. Angew. Chem. 2013, 125, 1236−1240. (b) Ohtani, R.;
Yoneda, K.; Furukawa, S.; Horike, N.; Kitagawa, S.; Gaspar, A. B.;
Munoz, M. C.; Real, J. A.; Ohba, M. Precise Control and Consecutive
Modulation of Spin Transition Temperature Using Chemical
Migration in Porous Coordination Polymers. J. Am. Chem. Soc.
2011, 133, 8600−8605. (c) Hagiwara, H.; Masuda, T.; Ohno, T.;
Suzuki, M.; Udagawa, T.; Murai, K. Neutral Molecular Iron(II)
Complexes Showing Tunable Bistability at Above, Below, and Just
Room Temperature by a Crystal Engineering Approach: Ligand
Mobility into a Three-Dimensional Flexible Supramolecular Network.
Cryst. Growth Des. 2017, 17, 6006−6019. (d) Phonsri, W.; Harding,
P.; Liu, L.; Telfer, S. G.; Murray, K. S.; Moubaraki, B.; Ross, T. M.;
Jameson, G. N. L.; Harding, D. J. Solvent modified spin crossover in
an iron(III) complex: phase changes and an exceptionally wide
hysteresis. Chem. Sci. 2017, 8, 3949−3959.
(12) Miller, R. G.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S. Spin
crossover with thermal hysteresis in cobalt(II) complexes and the
importance of scan rate. New J. Chem. 2014, 38, 1932.
(13) (a) Shao, D.; Deng, L.-D.; Shi, L.; Wu, D.-Q.; Wei, X.-Q.; Yang,
S.-R.; Wang, X.-Y. Slow Magnetic Relaxation and Spin-Crossover
Behavior in a Bicomponent Ion-Pair Cobalt(II) Complex. Eur. J.
Inorg. Chem. 2017, 2017, 3862−3867. (b) Shao, D.; Shi, L.; Yin, L.;
Wang, B.-L.; Wang, Z.-X.; Zhang, Y.-Q.; Wang, X.-Y. Reversible on−
off switching of both spin crossover and single-molecule magnet
behaviours via a crystal-to-crystal transformation. Chem. Sci. 2018, 9,
7986−7991.
(14) Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S.
SHAPE, Version 2.1; Universitat de Barcelona: 2013.
(15) Nakaya, M.; Ohtani, R.; Shin, J. W.; Nakamura, M.; Lindoyc, L.
F.; Hayami, S. M. Abrupt spin transition in a modifiedterpyridine
cobalt(II) complex with a highly-distorted [CoN6] core. Dalton Trans.
2018, 47, 13809−13814.
(16) Zhang, X.; Wang, Z.-X.; Xie, H.; Li, M.-X.; Woods, T. J.;
Dunbar, K. R. A cobalt(II) spin-crossover compound with partially
charged TCNQ radicals and an anomalous conducting behavior.
Chem. Sci. 2016, 7, 1569−1574.
(17) (a) Kulmaczewski, R.; Olguín, J.; Kitchen, J. A.; Feltham, H. L.
C.; Jameson, G. N. L.; Tallon, J. L.; Brooker, S. Remarkable Scan Rate
Dependence for a Highly Constrained Dinuclear Iron(II) Spin
Crossover Complex with a Wide Thermal Hysteresis Loop. J. Am.
(8) (a) Chen, W.-B.; Leng, J.-D.; Wang, Z.-Z.; Chen, Y.-C.; Miao, Y.;
Tong, M.-L.; Dong, W. Reversible crystal-to-crystal transformation
from a trinuclear cluster to a 1D chain and the corresponding spin
crossover (SCO) behavior change. Chem. Commun. 2017, 53, 7820−
́
7823. (b) Rodriguez-Jimenez, S.; Feltham, H. L. C.; Brooker, S. Non-
Porous Iron(II)-Based Sensor: Crystallographic Insights into a Cycle
of Colorful Guest-Induced Topotactic Transformations. Angew.
Chem., Int. Ed. 2016, 55, 15067−15071. (c) Costa, J. S.; Rodríguez-
́
Jimenez, S.; Craig, G. A.; Barth, B.; Beavers, C. M.; Teat, S. J.; Aromí,
G. Three-Way Crystal-to-Crystal Reversible Transformation and
Controlled Spin Switching by a Nonporous Molecular Material. J.
Am. Chem. Soc. 2014, 136, 3869−3874. (d) Wei, R.-J.; Huo, Q.; Tao,
J.; Huang, R.-B.; Zheng, L.-S. Spin-Crossover FeII4 Squares: Two-Step
Complete Spin Transition and Reversible Single-Crystal-to-Single-
Crystal Transformation. Angew. Chem., Int. Ed. 2011, 50, 8940−8943.
(e) Wei, R.-J.; Tao, J.; Huang, R.-B.; Zheng, L.-S. Reversible and
Irreversible Vapor-Induced Guest Molecule Exchange in Spin-
Crossover Compounds. Inorg. Chem. 2011, 50, 8553−8564. (f) Li,
B.; Wei, R.-J.; Tao, J.; Huang, R.-B.; Zheng, L.-S.; Zheng, Z. Solvent-
Induced Transformation of Single Crystals of a Spin-Crossover
(SCO) Compound to Single Crystals with Two Distinct SCO
Centers. J. Am. Chem. Soc. 2010, 132, 1558−1566.
Chem. Soc. 2014, 136, 878−881. (b) Valverde-Mun
̃
oz, F. J.; Seredyuk,
oz, M. C.; Znovjyak, K.; Fritsky, I. O.; Real, J. A. Strong
M.; Mun
̃
Cooperative Spin Crossover in 2D and 3D FeII−MI,II Hofmann-Like
Coordination Polymers Based on 2-Fluoropyrazine. Inorg. Chem.
2016, 55, 10654−10665.
(18) (a) Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.;
Cashion, C. S. Guest-Dependent Spin Crossover in a Nanoporous
Molecular Framework Material. Science 2002, 298, 1762−1765.
(b) Quesada, M.; de la Pena-O’Shea, V. A.; Aromi, G.; Geremia, S.;
Massera, C.; Roubeau, O.; Gamez, P.; Reedijk, J. A Molecule-Based
Nanoporous Material Showing Tuneable Spin-Crossover Behavior
near Room Temperature. Adv. Mater. 2007, 19, 1397−1402.
(c) Wang, Y.-T.; Li, S.-T.; Wu, S.-Q.; Cui, A.-L.; Shen, D.-Z.; Kou,
H.-Z. Spin Transitions in Fe(II) Metallogrids Modulated by
Substituents, Counteranions, and Solvents. J. Am. Chem. Soc. 2013,
135, 5942−5945. (d) Miller, R. G.; Brooker, S. Reversible quantitative
guest sensing via spin crossover of an iron(II) triazole. Chem. Sci.
2016, 7, 2501−2505.
(9) (a) Krivokapic, I.; Zerara, M.; Daku, M. L.; Vargas, A.;
Enachescu, C.; Ambrus, C.; Tregenna-Piggott, P.; Amstutz, N.;
Krausz, E.; Hauser, A. Spin-crossover in cobalt(II) imine complexes.
Coord. Chem. Rev. 2007, 251, 364−378. (b) Hayami, S.; Komatsu, Y.;
Shimizu, T.; Kamihata, H.; Lee, Y. H. Spin-crossover in cobalt(II)
compounds containing terpyridine and its derivatives. Coord. Chem.
Rev. 2011, 255, 1981−1990.
(19) (a) Sugiyarto, K. H.; Craig, D. C.; Rae, A. D.; Goodwin, H. A.
̈
(10) (a) Hayami, S.; Shigeyoshi, Y.; Akita, M.; Inoue, K.; Kato, K.;
Osaka, K.; Takata, M.; Kawajiri, R.; Mitani, T.; Maeda, Y. Reverse
Structural, Magnetic and Mossbauer Spectral Studies of Salts of
Bis[2,6-bis(pyrazol-3-yl)pyridine]iron(II)-a Spin Crossover System.
I
Inorg. Chem. XXXX, XXX, XXX−XXX