Please do not adjust margins
New Journal of Chemistry
Page 4 of 5
DOI: 10.1039/C8NJ01240G
COMMUNICATION
Journal Name
Virtanen, T. A. Liukkonen, O. Huida, M. L. Lindbohm and A.
Anttila, Am. J. Ind. Med., 1999, 36, 206-212; M. Holmström
and B. Wilhelmsson, Scand. J. Work, Environ. Health, 1988,
306-311.
P. H. Yu, S. Wright, E. H. Fan, Z.-R. Lun and D. Gubisne-
Harberle, Biochim. Biophys. Acta, Proteins Proteomics, 2003,
1647, 193-199.
accumulate in the mitochondria and could detect the FA in the
mitochondria.
Encouraged by the satisfactory results of cell imaging
experiments, the tissue imaging experiments were also
investigated. Consistent with expectations, the results of the
tissue imaging experiments were consistent with the results of
cell imaging. When the mice liver tissue slices were soaked in
FA solution (300 μM) for 1 h, and then soaked in the MT-FA
solution (10 μM) for another 40 min, the strong fluorescent
signals was observed with the penetration depth up to about
80 µm (Fig. 5). By contrast, the mice liver tissue slices were
only soaked in MT-FA solution (10 μM) for 40 min showed no
fluorescence signal in green channel (Fig. S12). These data
implied that the probe is capable of detecting FA in the liver
tissue slides.
2
3
(a) K. Tulpule and R. Dringen, J. Neurochem., 2013, 127
,
7-21. (b) Z. Tong, C. Han, W. Luo, H. Li, H. Luo, M. Qiang, T.
Su, B. Wu, Y. Liu, X. Yang, Y. Wan, D. Cui and R. He, Sci. Rep.,
2013,
M. Scotti, L. Stella, E. J. Shearer and P. J. Stover, Wiley
Interdiscip. Rev.: Syst. Biol. Med., 2013, , 343-365.
3, 1807.
4
5
5
6
M. T. Lin and M. F. Beal, Nature, 2006, 443, 787.
R. Zhang, I. K. Lee, K. A. Kang, M. J. Piao, K. C. Kim, B. J. Kim,
N. H. Lee, J.-Y. Choi, J. Choi and J. W. Hyun, J. Toxicol.
Environ. Health, Part A, 2010, 73, 1477-1489.
(a) O. Bunkoed, F. Davis, P. Kanatharana, P. Thavarungkul
and S. P. J. Higson, Anal. Chim. Acta, 2010, 659, 251-257; (b)
É. János, J. Balla, E. Tyihák and R. Gáborjányi, J. Chromatogr.
A, 1980, 191, 239-244; (c) J.-R. Li, J.-L. Zhu and L.-F. Ye, Asia
Pac. J. Clin. Nutr., 2007, 16, 127-130; (d) R. F. Coburn, J. Appl.
Physiol., 2012, 112, 1949-1955.
7
8
9
(1) J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
ed. J. R. Lakowicz, Springer US, Boston, MA, 2006; (2) D. Wu,
A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T.
D. James, Chem. Soc. Rev., 2017, 46, 7105-7123.
Some typical example: (a) T. F. Brewer and C. J. Chang, J. Am.
Chem. Soc., 2015, 137, 10886-10889; (b) Y. Tang, X. Kong, A.
Fig. 5. Two-photon fluorescence imaging of FA in the liver slides.
Fluorescence images of the liver slides incubated with FA (300 μM), and
then incubated with MT-FA (10 μM). Excitation was at 800 nm by the
femtosecond laser and the emission collection was from 500-550 nm.
Scale bar: 50 μm.
Xu, B. Dong and W. Lin, Angew. Chem., Int. Ed., 2016, 55
,
3356-3359; (c) A. Roth, H. Li, C. Anorma and J. Chan, J. Am.
Chem. Soc., 2015, 137, 10890-10893; (d) J. Xu, Y. Zhang, L.
In conclusion, the first mitochondrial-targeted TP
fluorescent probe, named as MT-FA, has been rationally
designed and synthesized. Upon reaction with FA, the PET
pathway which inhibits the fluorescence emission of the probe
is suppressed, and the probe shows significant fluorescence
enhancement than the other analytes. Importantly, the co-
localization experiments indicate that MT-FA may effectively
accumulate in the mitochondria for monitoring of FA in living
cells. Moreover, MT-FA could also successfully detect FA in
living mice liver tissue slices with the penetration depth up to
about 80 µm. We believe the MT-FA is conducive to further
disentangle physiological and pathological effects of FA in
living system, especially in mitochondria.
Zeng, J. Liu, J. M. Kinsella and R. Sheng, Talanta, 2016, 160
645-652; (e) S. Singha, Y. W. Jun, J. Bae and K. H. Ahn, Anal.
,
Chem., 2017, 89, 3724-3731; (f) X. Xie, F. Tang, X. Shangguan,
S. Che, J. Niu, Y. Xiao, X. Wang and B. Tang, Chem. Commun.,
2017, 53, 6520-6523; (g) K. J. Bruemmer, R. R. Walvoord, T.
F. Brewer, G. Burgos-Barragan, N. Wit, L. B. Pontel, K. J. Patel
and C. J. Chang, J. Am. Chem. Soc., 2017, 139, 5338-5350; (h)
Z. Xie, J. Ge, H. Zhang, T. Bai, S. He, J. Ling, H. Sun and Q. Zhu,
Sens. Actuators, B, 2017, 241, 1050-1056; (i) L. He, X. Yang,
M. Ren, X. Kong, Y. Liu and W. Lin, Chem. Commun., 2016,
52, 9582-9585; (j) F. Wu, Y. Zhang, L. Huang, D. Xu and H.
Wang, Anal. Methods, 2017, 9, 5472-5477; (k) A. Bi, T. Gao,
X. Cao, J. Dong, M. Liu, N. Ding, W. Liao and W. Zeng, Sens.
Actuators, B, 2018, 255, 3292-3297; (l) X.-G. Liang, B. Chen,
L.-X. Shao, J. Cheng, M.-Z. Huang, Y. Chen, Y.-Z. Hu, Y.-F. Han,
F. Han and X. Li, Theranostics, 2017, 7, 2305-2313.
10 (a) M. Göppert-Mayer, Annalen der Physik, 1931, 401, 273-
294; (b) E. Bayer and G. Schaack, Phys. Status Solidi, 1970,
41, 827-835; (c) H. M. Kim and B. R. Cho, Chem. Rev., 2015,
115, 5014-5055.
This work was financially supported by NSFC (21472067,
21672083), the Taishan Scholar Foundation (TS 201511041),
and the start-up fund of the University of Jinan (309-10004).
11 (a) D.P. Murale, S.C. Hong, M.M. Haque, J.-S. Lee,
ChemBioChem, 2018, Doi: 10.1002/cbic.201800059; (b) B.C.
Dickinson, C.J. Chang, J. Am. Chem. Sco., 2008, 130, 9638–
9639. (c) Q.Hu, M. Gao, G. Feng, B. Liu, Angew. Chem. Int. Ed.,
2014, 53, 14225-9.
Conflicts of interest
There are no conflicts to declare.
12 H. Yu, Y. Xiao and L. Jin, J. Am. Chem. Soc., 2012, 134, 17486-
17489.
13 M.F. Abad, G. Di Benedetto, P.J. Magalhaes, J. biol. Chem.
2004, 279, 11521-11529.
Notes and references
1
(a) M. Unzeta, M. Solé, M. Boada and M. Hernández, J.
Neural Transm., 2007, 114, 857-862; (b) M. Hauptmann, P. A.
Stewart, J. H. Lubin, L. E. Beane Freeman, R. W. Hornung, R. F.
Herrick, R. N. Hoover, J. J. F. Fraumeni, A. Blair and R. B.
Hayes, J. Natl. Cancer Inst., 2009, 101, 1696-1708; (c) J. K.
McLaughlin, Int. Arch. Occup. Environ. Health, 1994, 66, 295-
301.; (d) H. K. Taskinen, P. Kyyrönen, M. Sallmén, S. V.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins