Macromolecules
ARTICLE
Gelation Tests. The measured amount of organogelator (merocyanine 1)
was dissolved in the respective amount of CHCl3 in a screw-capped
sample vial. Gels were formed upon addition of appropriate amounts of
n-hexane to the stock solution. The formation of the gel was tested by
the “stable-to-inversion of a vial” method39 after leaving the sample for
1 h at ambient conditions.
’ ACKNOWLEDGMENT
We gratefully thank Dr. Xin Zhang for performing TEM
measurements and the Volkswagen Foundation for financial
support of this work within the priority program “Complex
Materials: Cooperative Projects on the Natural, Engineering and
Biosciences”.
Synthesis and Characterization of Precursor 8 and the
Target Compound 1. 1-{3,5-Bis[(6-dodecyrylamino)pyridine-2-
yl]carbamoyl}phenyl-2,6-dimethyl-4-pyridone (8). Diamine 7 (2.22 g,
4.72 mmol) was dissolved in dry THF (140 mL) under an argon atmo-
sphere and cooled to 0 °C. At this temperature, dodecanoyl chloride (2.38 g,
2.59 mL, 10.9 mmol) was added dropwise. Afterward, the reaction mixture
was stirred for 16 h at room temperature. The resultant suspension was
poured into a saturated aqueous solution of NaHCO3 (200 mL, pH 8ꢀ10).
After extracting the aqueous layer with CHCl3 (4 ꢁ 50 mL), the combined
organic layers were dried over MgSO4. The solvent was removed under
reduced pressure and the residue was purified by column chromatography
using silica gel with EtOAc/EtOH = 10:1 vol % as eluent to give pure 8
(1.65 g, 1.98 mmol, 42%). 1H NMR (400 MHz, CDCl3): δ 9.92 (br s, 4 H,
NH), 8.86 (s, 1 H, ArH), 8.25 (s, 2 H, ArH), 8.06 (d, 3J = 7.2 Hz, 2 H,
CHpyridine), 8.01 (d, 3J = 5.9 Hz, 2 H, CHpyridine), 7.77 (t, 3J = 7.4 Hz, 2 H,
CHpyridine), 2.33 (t, 3J = 7.2 Hz, 4 H, COCH2), 1.77 (s, 6 H, CH3), 1.67
’ REFERENCES
(1) (a) W€urthner, F.; Yao, S. Angew. Chem., Int. Ed. 2000, 39, 1978–
1981. (b) W€urthner, F.; Yao, S.; Debaerdemaker, T.; Wortmann, R. J. Am.
Chem. Soc. 2002, 124, 9431–9447.
(2) (a) W€urthner, F.; Yao, S.; Beginn, U. Angew. Chem., Int. Ed. 2003,
42, 3247–3250. (b) Yao, S; Beginn, U.; Gress, T.; Lysetska, M.; W€urthner,
F. J. Am. Chem. Soc. 2004, 126, 8336–8348. (c) Lohr, A.; Lysetska, M.;
W€urthner, F. Angew. Chem., Int. Ed. 2005, 44, 5071–5074. (d) Lohr, A.;
Gress, T.; Deppisch, M; Knoll, M; W€urthner, F. Synthesis 2007, 3073–3082.
(3) (a) Schmidt, R.; Uemura, S.; W€urthner, F. Chem.—Eur. J. 2010,
16, 13706–13715. (b) Yagai, S.; Nakano, Y.; Seki, S.; Asano, A.; Okubo,
T.; Isoshima, T.; Karatsu, T.; Kitamura, A.; Kikkawa, Y. Angew. Chem.,
Int. Ed. 2010, 49, 9990–9994.
(4) (a) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001,
30, 83–93. (b) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma,
R. P. Chem. Rev. 2001, 101, 4071–4097. (c) Hoeben, F. J. M.; Jonkheijm,
P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005,
105, 1491–1546. (d) Binder, W. H.; Zirbs, R. Adv. Polym. Sci. 2007,
207, 1–78. (e) Shimizu, L. S. Polym. Int. 2007, 56, 444–452.
(5) Chang, S.-K.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 1318–
1319.
(m, 4 H, CH2), 1.23 (m, 32 H, CH2), 0.86 (t, 3J = 6.8 Hz, 6 H, CH3). 13
C
NMR (ca. 100 MHz, CDCl3): δ 172.59, 163.18, 150.64, 149.78, 140.87,
139.49, 136.93, 130.29, 117.53, 117.07, 116.93, 116.88, 110.66, 110.31,
37.63, 34.46, 32.03, 29.34, 25.50, 25.10, 21.83, 14.23. HRMS (ESI, pos.
mode, CH3CN/CHCl3 = 1:1 vol %): calc. m/z C49H68N7O5 ([M þ
H]þ) 834.52819; found 834.52764.
5-{1-[3,5-Bis[(6-dodecyrylamino)pyridine-2-yl]carbamoyl]phenyl-
2,6-dimethyl-pyridine-4-ylidene}-pyrdimidine-2,4,6-trione (1). A cata-
lytic amount of concentrated HOAc was added to a solution of pyridone 8
(1.77 g, 2.12 mmol) and barbituric acid 9 (272 mg, 2.12 mmol) in Ac2O
(3.80 mL). The resultant reaction mixture was heated to 90 °C for 3 h.
Afterward the solvent was removed under reduced pressure. In a first
purification step, the crude product was purified by column chromatog-
raphy using silica gel and CH2Cl2/MeOH = 98.5:1.5 vol %. Subsequent
purification by GPC (CHCl3) and repeated reprecipitation from CHCl3/
n-hexane yielded pure 1 (80.1 mg, 84.8 μmol, 4%). Mp 325ꢀ327 °C
(6) (a) Tecilla, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldeck,
D. H.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 9408–9410. (b) Dirksen,
A.; Hahn, U.; Schwanke, F.; Nieger, M.; Reek, J. N. H.; V€ogtle, F.; De Cola, L.
Chem.—Eur. J. 2004, 10, 2036–2047. (c) McClenaghan, N. D.; Grote, Z.;
Darriet, K.; Zimine, M.; Williams, R. M.; De Cola, L.; Bassani, D. M. Org. Lett.
2005, 7, 807–810. (d) Molard, Y.; Bassani, D. M.; Desvergne, J.-P.; Horton,
P. N.; Hursthouse, M. B.; Tucker, J. H. R. Angew. Chem., Int. Ed. 2005,
44, 1072–1075. (e) Wessendorf, F.; Gnichwitz, J.-F.; Sarova, G. H.; Hager, K.;
Hartnagel, U.; Guldi, D. M.; Hirsch, A. J. Am. Chem. Soc. 2007,
129, 16057–16071. (f) Wessendorf, F.; Grimm, B.; Guldi, D. M.; Hirsch,
A. J. Am. Chem. Soc. 2010, 132, 10786–10795.
(decomposition). UV/vis (1,4-dioxane): λmax/nm (εmax/L molꢀ1 cmꢀ1
)
= 396(50.8 ꢁ 103). 1H NMR (400 MHz, 293 K, DMSO-d6): δ 10.75 (s, 2
H, NH), 10.02 (s, 4 H, NH), 9.03 (s, 2 H, CH), 8.65 (s, 1 H, ArH), 8.31 (s,
2 H, ArH), 7.83 (m, 6 H, CHpyridine), 2.39 (t, 3J = 7.7 Hz, 4 H, COCH2),
2.22 (s, 6 H, CH3), 1.58 (m, 4 H, CH2), 1.24 (m, 32 H, CH2), 0.85 (t, 3J =
6.8 Hz, 6 H, CH3). 13C NMR (ca. 150 MHz, 313 K, DMSO-d6): δ 172.00,
170.57, 170.39, 165.12, 165.09, 163.77, 150.43, 150.03, 149.98, 139.83,
136.18, 129.94, 129.49, 123.46, 113.54, 110.03, 109.99, 36.02, 31.10,
30.76, 24.47, 24.83, 21.90, 21.88, 21.86, 13.72. HRMS (ESI, pos. mode,
CHCl3/THF = 1:1 vol %): calc. m/z C53H70N9O7 ([MþH]þ)
944.53927; found 944.53850.
(7) (a) Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn,
J.-M. Chem.—Eur. J. 2002, 17, 1227–1244. (b) Kolomiets, E.; Buhler, E.;
Candau, S. J.; Lehn, J.-M. Macromolecules 2006, 39, 1173–1181.
(c) Binder, W. H.; Petraru, L.; Roth, T.; Groh, P. W.; Pꢀalfi, V.; Keki,
S.; Ivan, B. Adv. Funct. Mater. 2007, 17, 1317–1326.
(8) Franz, A.; Bauer, W.; Hirsch, A. Angew. Chem., Int. Ed. 2005,
44, 1564–1567.
(9) (a) Zhao, X.; Li, Z.-T. Chem. Commun. 2010, 46, 1601–1616.
(b) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.-M. Nature
2000, 407, 720–723. (c) Berl, V.; Krische, M. J.; Huc, I.; Lehn, J.-M.;
Schmutz, M. Chem.—Eur. J. 2000, 6, 1938–1946.
(10) (a) Binder, W. H.; Bernstorff, S.; Kluger, C.; Petraru, L.; Kunz,
M. Adv. Mater. 2005, 17, 2824–2828. (b) Burd, C.; Weck, M. Macro-
molecules 2005, 38, 7225–7230.
’ ASSOCIATED CONTENT
Supporting Information. 1H NMR spectra of key com-
(11) (a) Motesharei, K.; Myles, D. C. J. Am. Chem. Soc. 1994,
116, 7413–7414. (b) Binder, W. H.; Kluger, C.; Josipovic, M.; Straif,
C. J.; Friedbacher, G. Macromolecules 2006, 39, 8092–8101.
(12) (a) Yagai, S.; Higashi, M.; Karatsu, T.; Kitamura, A. Chem.
Mater. 2005, 17, 4392–4398. (b) Yagai, S.; Higashi, M.; Karatsu, T.;
Kitamura, A. Chem. Commun. 2006, 1500–1502. (c) Yagai, S.; Kinoshita,
T.; Higashi, M.; Kishikawa, K.; Nakanishi, T.; Karatsu, T.; Kitamura, A.
J. Am. Chem. Soc. 2007, 129, 13277–13287.
S
b
pounds 1 and 8, assignment of proton signals of 1 and reference
compound 12, supplementary mass, UVꢀvis, and fluores-
cence spectra, detailed data evaluation, and molecular model-
ing. This material is available free of charge via the Internet at
(13) Ikeda, M.; Nobori, T.; Schmutz, M.; Lehn, J.-M. Chem.—Eur. J.
2005, 11, 662–668.
(14) (a) W€urthner, F.; Schmidt, J.; Stolte, M.; Wortmann, R. Angew.
Chem., Int. Ed. 2006, 45, 3842–3846. (b) Schmidt, J.; Schmidt, R.;
W€urthner, F. J. Org. Chem. 2008, 73, 6355–6362.
’ AUTHOR INFORMATION
Corresponding Author
*Fax: (þ49) 931-31-84756. E-mail: wuerthner@chemie.
uni-wuerzburg.de.
3775
dx.doi.org/10.1021/ma2004184 |Macromolecules 2011, 44, 3766–3776