C O M M U N I C A T I O N S
Scheme 2. Self-Assembly of [G0]-[G3] 120° Dendritic Linkers
a-d with Di-platinum Acceptor 6
hexagonal cavity with an internal radius of approximately 1.6 nm
as the core, whereas the outer radius is about 2.8 nm.
5
The coordination-driven self-assembly described here demon-
strates the ready formation of discrete nanoscopic metallodendrimers
by simple combination of predesigned dendritic donor and di-Pt-
(II) acceptor building blocks, which enriches the library of
metallodendrimers. This strategy provides rapid access to supramo-
lecular metallodendrimers with a hexagonal cavity as a core that
may have potential applications in host-guest chemistry. We are
currently extending this idea to other two-dimensional structures
such as rhomboids, squares, and triangles, and even three-
dimensional architectures such as trigonal prisms and trigonal
bipyramids.
Acknowledgment. P.J.S. thanks the NIH (GM-57052) and the
]2+ (m/z
3
NSF (CHE-0306720) for financial support. We also thank the NSF
attributable to the loss of nitrate counterions, [M - 2NO
2267.7 7a, m/z ) 2586.3 7b), where M represents the intact
(CHE-9708413) and the University of Utah Institutional Funds
)
Committee for funding the Micromass Quattro II mass spectrometer.
D.C.M. and A.M.H. thank the W. M. Keck Foundation and NCSU
for generous financial support.
assemblies, were observed. These peaks were isotopically resolved
and they agree very well with the theoretical distribution. The ESI
mass spectrum of [G2] assembly 7c showed two charged states at
4+
m/z ) 1580.6 and 1252.0, corresponding to the [M - 4NO
3
]
Supporting Information Available: General detailed experimental
procedures and characterizations data for all metallodendrimers, ESI/
MS of metallodendrimers 7a-d, and ESI-FTI-ICR/MS of 7d. This
material is available free of charge via the Internet at http://pubs.acs.org.
5+
and [M - 5NO
3
]
species, respectively, and their isotopic
resolution is in good agreement with the theoretical distribution.
5+
3
The isotopic resolution of the peak at m/z ) 1761.5 [M - 5NO ]
in ESI-FT-ICR mass spectrum of [G3] assembly 7d is in excellent
agreement with the theoretical distribution (Figure 2).
References
(
1) (a) Fr e´ chet, J. M. J.; Tomalia, D. A. Dendrimers and Other Dendritic
Polymers; VCH-Wiley: New York, 2000. (b) Newkome, G. R.; Moore-
field, C. N.; V o¨ gtle, F. Dendrimers and Dendrons; Wiley-VCH: Wein-
heim, 2001. (c) Grayson, S. M.; Fr e´ chet, J. M. J. Chem. ReV. 2001, 101,
3
819-3868.
(
2) (a) Franz, A.; Bauer, W.; Hirsch, A. Angew. Chem., Int. Ed. 2005, 44,
564-1567. (b) Corbin, P. S.; Lawless, L. J.; Li, Z.; Ma, Y.; Witmer, M.
1
J.; Zimmerman, S. C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5099. (c)
Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J. J. Am. Chem.
Soc. 2005, 127, 7594-7600. (d) Leung, K. C.-F.; Arico, F.; Cantrill, S.
J.; Stoddart, J. F. J. Am. Chem. Soc. 2005, 127, 5808-5810. (e)
Yamaguchi, N.; Hamilton, L. M.; Gibson, H. W. Angew. Chem., Int. Ed.
1
998, 37, 3275-3279.
(
3) (a) Zeng, F.; Zimmerman, S. C. Chem. ReV. 1997, 97, 1681-1712. (b)
Newkome, G. R.; He, E.; Moorefield, C. N. Chem. ReV. 1999, 99, 1689-
1
746. (c) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV.
1999, 99, 1665-1688.
(
4) (a) Astruc, D.; Blais, J.-C.; Cloutet, E.; Djakovitch, L.; Rigaut, S.; Ruiz,
J.; Sartor, V.; Val e´ rio, C. Top. Curr. Chem. 2000, 210, 229-259. (b)
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem.
Res. 2001, 34, 181-190.
(
5) Li, W.-S.; Jiang, D.-L.; Suna, Y.; Aida, T. J. Am. Chem. Soc. 2005, 127,
7
700-7702.
(
6) (a) Enomoto, M.; Aida, T. J. Am. Chem. Soc. 1999, 121, 874-875. (b)
Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.;
Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902-17909.
(
7) (a) Adronov, A.; Fr e´ chet, J. M. J. Chem. Commun. 2000, 1701-1710.
1
0658. (b) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew.
Figure 2. The ESI-FT-ICR mass spectrum of [G3]-metallodendrimer 7d.
Chem., Int. Ed. 2004, 43, 150-158. (c) Mo, Y.-J.; Jiang, D.-L.; Uyemura,
M.; Aida, T.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 10020-10027.
8) (a) Daniel, M.-C.; Astruc, D. Chem. ReV. 2004, 104, 293-346. (b)
Wendland, M. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1999, 121, 1389-
(
MM2 force-field simulations were employed to optimize the
geometry of [G3]-metallodendrimer 7d (Figure 3). The space filling
model of the simulated structure indicates 7d has a nonplanar
1
390. (c) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.;
Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.;
Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature.
2
004, 430, 764-768. (d) Gorman, C. B.; Smith, J. C. J. Am. Chem. Soc.
2
000, 122, 9342-9343. (e) Wang, P.; Moorefield, C. N.; Newkome, G.
R. Org. Lett. 2004, 6, 1197-1200. (f) Niu, Y.; Crooks, R. M. In
Dendrimers and Nanoscience; Astruc, D., Ed.; Compte-Rendus Chimie,
Elsevier: Paris, 2003; Vol. 6, p 989.
(
9) (a) Fischer, M.; Lieser, G.; Rapp, A.; Schnell, I.; Mamdouh, W.; De Feyter,
S.; De Schryver, F. C.; Hoger, S. J. Am. Chem. Soc. 2004, 126, 214-
222. (b) Hoger, S.; Bonrad, K.; Moller, M.; Mourran, A.; Beginn, U. J.
Am. Chem. Soc. 2001, 123, 5651-5659.
10) (a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res.
005, 38, 369-378. (b) Gianneschi, N. C.; Masar, M. S., III; Mirkin, C.
(
2
A. Acc. Chem. Res. 2005, 38, 825-837. (c) Leininger, S.; Olenyuk, B.;
Stang, P. J. Chem. ReV. 2000, 100, 853-908. (d) Stang, P. J.; Olenyuk,
B. Acc. Chem. Res. 1997, 30, 502-518. (e) Cotton, F. A.; Lin, C.; Murillo,
C. A. Acc. Chem. Res. 2001, 34, 759-771. (f) Fiedler, D.; Leung, D. H.;
Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351-360.
11) The detailed procedure will be published in the full paper.
(
Figure 3. Space-filling model of [G3]-metallodendrimer 7d optimized with
the MM2 force-field simulation.
JA063377Z
J. AM. CHEM. SOC.
9
VOL. 128, NO. 31, 2006 10015