The III-catalyzed processes also took place with less reactive alkyl-
Table 1 Organocatalytic asymmetric domino oxa-Michael–aldol
reaction of trans-cinnamaldehyde (1a) with salicylaldehyde (2a)a
substituted a,b-unsaturated aldehydes (entries 11 and 12), albeit
with lower yields and enantioselectivities. Significant structural
variation in the salicylaldehydes 2 was tolerated in the process.
Aromatic rings, bearing electron neutral (entries 1–2), withdrawing
(entries 4, 8, 10 and 11) and donating (entries 3, 5–7, 9 and 12)
groups could undergo the III-promoted cascade process efficiently.
In summary, we have uncovered a one-pot organocatalyzed
domino oxa-Michael–aldol reaction that transforms readily
available a,b-unsaturated aldehydes and 2-salicylaldehydes to
synthetically and biologically useful chiral chromenes in high
enantiomeric purities. Investigations of the full scope of the
cascade reaction, and its application to the synthesis of biologically
interesting compounds are underway and the results will be
reported in due course.
Entry
Cat.
Solvent
t/h
Yieldb (%)
ee (%)c
1
2
3
I
Toluene
Toluene
Cl(CH2)2Cl
Cl(CH2)2Cl
Cl(CH2)2Cl
Cl(CH2)2Cl
36
48
22
60
60
96
,5
70
91
51
87
52
NDd
52
80
89
88
80
II
II
II
III
IV
4e
5e
6e
a
Unless otherwise specified, the reaction was carried out with 1a
(0.1 mmol) and 2a (1.0 mmol) in the presence of an organocatalyst
˚
(0.03 mmol), benzoic acid ( 0.03 mmol), 4 A MS (50 mg), and
b
solvent (0.5 mL). Isolated yield. Determined by chiral HPLC
c
Financial support for this work provided by the Department of
Chemistry and the Research Allocation Committee, the University
of New Mexico, the ACS-PRF and NIH-INBRE (P20 RR016480)
is gratefully acknowledged.
d
e
analysis (Chiralpak AS-H). Not determined. Performed at 0 uC.
Table 2 Catalyst III promoted domino oxa-Michael–aldol reactions
of a,b-unsaturated aldehydes (1) with salicylaldehydes (2)a
Notes and references
1 (a) G. Zeni and R. C. Larock, Chem. Rev., 2004, 104, 2285; (b)
B. A. Keay, in Comprehensive Heterocyclic Chemistry II, ed. A. R.
Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996,
vol. 2, p. 395.
2 For selected examples of biologically active chromenes, see: (a) J. Mori,
M. Iwashima, M. Takeuchi and H. Saito, Chem. Pharm. Bull., 2006, 54,
391; (b) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, T. Yamasisbi,
T. Fujioka, K. Milashi, K. Mizuki, L. M. Cosentino, K. S. Fowke,
L. Morris-Natschke and K.-H. Lee, Tetrahedron, 2001, 57, 1559; (c)
K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao,
S. Barluenga and H. J. Mitchell, J. Am. Chem. Soc., 2000, 122, 9939,
and references therein; (d) A. Elomri, S. Mitaku, S. Michel,
A.-L. Skaltsounis, F. Tillequin, M. Koch, A. Pierre´, N. Guilbaud,
S. Le´nce, L. Kraus-Berthier, Y. Rolland and G. Atassi, J. Med. Chem.,
1996, 39, 4762; (e) P. Wipf and W. S. Weiner, J. Org. Chem., 1999, 64,
5321; (f) T. Iwasaki, S.-I. Mihara, T. Shimamura, M. Kawakami,
M. Masui, Y. Hayasaki-Kajiwara, N. Naya, M. Ninomiya,
M. Fujimoto and M. Nakajima, J. Cardiovasc. Pharmacol., 2001, 37,
471; (g) R. Mannhold, G. Cruciani, H. Weber, H. Lemoine, A. Derix,
C. Weichel and M. Clementi, J. Med. Chem., 1999, 42, 981.
3 For selected examples of recent methods for synthesis of chromenes, see:
(a) I. Yavari and A. Ramazani, Synth. Commun., 1997, 27, 1385; (b)
F. Bigi, S. Carloni, R. Maggi, C. Muchetti and G. Sartori, J. Org.
Chem., 1997, 62, 7024; (c) J. M. J. Tronchet, S. Zerelli and
G. Bernardinelli, J. Carbohydr. Chem., 1999, 18, 343; (d) S. Chang
and R. H. Grubbs, J. Org. Chem., 1998, 63, 864; (e) Q. Wang and
M. G. Finn, Org. Lett., 2000, 2, 4063; (f) S. Caddick and W. Kofie,
Tetrahedron Lett., 2002, 43, 9347; (g) J. Y. Goujon, F. Zammattio,
S. Pagnoncelli, Y. Boursereau and B. Kirschleger, Synlett, 2002, 322; (h)
P. T. Kaye, M. A. Musa, X. W. Nocanda and R. S. Robinson, Org.
Biomol. Chem., 2003, 1, 1133; (i) S. W. Youn and J. I. Eom, Org. Lett.,
2005, 7, 3355; (j) G.-L. Zhao, Y.-L. Shi and M. Shi, Org. Lett., 2005, 7,
4527; (k) J. C. Hershberger, L. Zhang, G. Lu and H. C. Malinakova,
J. Org. Chem., 2006, 71, 231, and refs. 2c and 2e.
4 (a) J. P. A. Harrity, J. S. Wisser, J. D. Gleason and A. H. Hoveyda,
J. Am. Chem. Soc., 1997, 119, 1488; (b) J. P. A. Harrity, D. S. La,
D. R. Cefalo, M. S. Visser and A. H. Hoveyda, J. Am. Chem. Soc.,
1998, 120, 2343; (c) C. Hardouin, L. Burgaud, A. Valleix and E. Doris,
Tetrahedron Lett., 2003, 44, 435.
5 S. J. Pastine, S. W. Youn and D. Sames, Org. Lett., 2003, 5, 1055.
6 T. Konoike, K. Matsumura, T. Yorifuji, S. Shinomoto, Y. Ide and
T. Ohya, J. Org. Chem., 2002, 67, 7741.
7 G. Lu and H. C. Malinakova, J. Org. Chem., 2004, 69, 4701.
8 For recent reviews of tandem reactions, see: (a) H. Guo and J. Ma,
Angew. Chem., Int. Ed., 2006, 45, 354; (b) H. Pellissier, Tetrahedron,
2006, 62, 1619; (c) H. Pellissier, Tetrahedron, 2006, 62, 2143; (d)
L. F. Tietze, Chem. Rev., 1996, 96, 115.
Entry
R
X
T/uC t/h
Yieldb (%) eec (%)
88
1
2
3
4
5
6
7
8
Ph
4-NO2C6H4
4-NO2C6H4 5-Me
4-NO2C6H4 5-Cl
4-NO2C6H4 4-MeO r.t.
4-NO2C6H4 3-MeO
4-NO2C6H4 5-MeO 215
2-NO2C6H4 5-Cl
Ph
4-MeOC6H4 5-Cl
Me
Me
H
H
0
0
0
0
60 87
24 96
95
96
91
86
90
94
.99
87
18 98
18 96
120 64
36 98
24 95
0
215 144 82
9
5-MeO
0
4
0
0
48 97
72 53
36 67
48 84
10
11
12
a
75
82
85
5-Cl
5-MeO
Reaction conditions: unless specified, see footnote a in Table 1.
Isolated yields. Determined by chiral HPLC analysis (Chiralpak
AS-H, or Chiralcel OD-H).
b
c
Having established optimal conditions for reaction of trans-
cinnamaldehyde 1a and salicylaldehyde 2a to form the chromene
3a in ClCH2CH2Cl promoted by catalyst III, we next probed the
scope of the domino oxa-Michael–aldol process by using a variety
of a,b-unsaturated aldehydes 1 and salicylaldehydes 2. As the data
in Table 2 show, the reactions proceeded in respectively high yields
(53–98%) and with good to excellent levels of enantioselectivities
(75–99% ee) (Table 2). The process appeared to have a broad
scope, but efficiencies and ees varied with the electronic and steric
nature of the a,b-unsaturated aldehydes 1 and salicylaldehydes 2.
a,b-Unsaturated aldehydes 1 bearing electron-withdrawing groups,
such as nitro group, generally afforded products in higher yields
(82–98%) and higher ee values (86–99%, entries 2–8) than those
not possessing electron withdrawing groups. Relatively lower ees
were observed for reactions of a,b-unsaturated aromatic aldehydes
1 that bear neutral (entries 1 and 9) or electron-donating (entry 10)
substituents. Also, the results showed that steric hindrance
retarded the reactions but enhanced enantioselectivities (entry 8).
508 | Chem. Commun., 2007, 507–509
This journal is ß The Royal Society of Chemistry 2007