3+
ꢀꢀꢀꢁ
6ꢀ ꢀR.-G. Lv et al.: Fluorescence probe for the detection of Cr
the detection of Cr3+ in aqueous media. Dyes Pigments 2013,
97, 148–154.
[20] Elavarasi, M.; Rajeshwari, A.; Chandrasekaran, N.; Mukherjee,
A. Simple colorimetric detection of Cr(III) in aqueous solu-
tions by as synthesized citrate capped gold nanoparticles and
development of a paper based assay. Anal. Methods 2013, 5,
6211–6218.
[4] Lin, Q.; Lu, T. T.; Zhu, X.; Wei, T. B.; Li, H.; Zhang, Y. M. Ration-
ally introduced multi-competitive binding interactions in supra-
molecular gels: a simple and efficient approach to develop
multi-analyte sensor array. Chem. Sci. 2016, 7, 5341–5346.
[5] Vincent, J. B. Quest for the molecular mechanism of chromium
action and its relationship to diabetes. Nutr. Rev. 2000, 58,
67–72.
[6] Eastmond, D. A.; MacGregor, J. T.; Slesinski, R. S. Trivalent
chromium: assessing the genotoxic risk of an essential trace
element and widely used human and animal nutritional supple-
ment. Crit. Rev. Toxicol. 2008, 38, 173–190.
[7] Liu, D.; Pang, T.; Ma, K.; Jiang, W.; Bao, X. A new highly sensi-
tive and selective fluorescence chemosensor for Cr3+ based on
rhodamine B and a 4,13-diaza-18-crown-6-ether conjugate.
RSC. Adv. 2014, 4, 2563–2567.
[8] Lei, Y.; Su, Y.; Huo, J. Photophysical property of rhodamine-
cored poly(amidoamine)dendrimers: simultaneous effect of
spirolactam ring-opening and PET process on sensing trivalent
chromium ion. J. Lumin. 2011, 131, 2521–2527.
[9] Li, X.; Gao, X.; Shi, W.; Ma, A. H. Design strategies for water-
soluble small molecular chromogenic and fluorogenic probes.
Chem. Rev. 2014, 114, 590–659.
[10] Espinosa, A.; Otón, F.; Martínez, R.; Tárraga, A.; Molina, P.
A multidimensional undergraduate experiment for easy solu-
tion and surface sensing of mercury(II) and copper(II) metal
cations. J. Chem. Edu. 2013, 90, 1057–1060.
[11] Han, Y.; You, Y.; Lee, Y. M.; Nam, W. Double Action: toward
phosphorescence ratiometric sensing of chromium ion. Adv.
Mater. 2012, 24, 2748–2754.
[12] Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Fluorescent and col-
orimetric sensors for detection of lead, cadmium, and mercury
ions. Chem. Soc. Rev. 2012, 41, 3210–3244.
[13] Xua, Z.; Zhang, L.; Guo, R.; Xiang, T.; Wu, C.; Zheng, Z.; Yang,
F. A highly sensitive and selective colorimetric and off-on fluo-
rescent hemosensor for Cu2+ based on rhodamine B derivative.
Sens. Actuators B. 2011, 156, 546–552.
[21] Zhao, M.; Ma, L.; Zhang, M.; Cao, W.; Yang, L.; Ma, L. J.
Glutaminecontaining “turn-on” fluorescence sensor for the
highly sensitive and selective detection of chromium (III) ion in
water. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 116,
460–465.
[22] Shyamaprosad, G.; Avijit, K. D.; Anup, K. M.; Abhishek, M.;
Krishnendu, A.; Sibaprasad, M.; Partha, S.; Tarun, K. M. Visual
and near IR (NIR) fluorescence detection of Cr3+ in aqueous
media via spirobenzopyran ring opening with application in
logic gate and bio-imaging. Dalton Trans. 2014, 43, 231–239.
[23] Sima, P.; Abhishek, M.; Shyamaprosad, G. A differentially
selective molecular probe for detection of trivalent ions (Al3+
,
Cr3+ and Fe3+) upon single excitation in mixed aqueous medium.
Dalton Trans. 2015, 44, 11805–11810.
[24] Wang, L. N.; Qin, W. W.; Liu, W. S. A sensitive Schiff-base
fluorescent indicator for the detection of Zn2+. Inorg. Chem.
Commun. 2010, 13, 1122–1125.
[25] Abhishek, M.; Shyamaprosad, G. Ratiometric detection of
hypochlorite applying the restriction to 2-way ESIPT: simple
design for ‘‘naked-eye’’ tap water analysis. New J. Chem. 2015,
39, 4424–4429.
[26] Li, G. B.; Fang, H. C.; Cai, Y. P.; Zhou, Z. Y.; Thallapally, P. K.;
Tian, J. Construction of a Novel Zn-Ni Trinuclear Schiff Base and
a Ni2+ Chemosensor. Inorg. Chem. 2010, 49, 7241–7243.
[27] Shyamaprosad, G.; Abhishek, M.; Monalisa, M.; Debasish, S.
Cascade reaction-based rapid and ratiometric detection of H2S/
S2− in the presence of bio-thiols with live cell imaging: demask-
ing of ESIPT approach. RSC Adv. 2014, 4, 62639–62643.
[28] Shyamaprosad, G.; Abhishek, M.; Sima, P.; Anup, K. M.; Partha,
S.; Ching, K. Q.; Fun, H. K. FRET based ‘red-switch’ for Al3+ over
ESIPT based ‘green-switch’ for Zn2+: dual channel detection
with live-cell imaging on a dyad platform. RSC Adv. 2014, 4,
34572–34576.
[29] Shymaprosad, G.; Manna, A.; Paul, S.; Das, A. K.; Aich, K.;
Nandi, P. K. Resonance-assisted hydrogen bonding induced
nucleophilic addition to hamper ESIPT: ratiometric detec-
tion of cyanide in aqueous media. Chem. Commun. 2013, 49,
2912–2914.
[14] Kim, H.; Wang, S.; Kim, S. H.; Son, Y. A. Design, synthesis and
optical property of rhodamine 6G based new dye sensor. Mol.
Cryst. Liq. Cryst. 2012, 566, 45–53.
[15] Bag, B.; Pal, A. Rhodamine-based probes for metal ion-induced
chromo-/fluorogenic dual signaling and their selectivity
towards Hg (II) ion. Org. Biomol. Chem. 2011, 9, 4467–4480.
[16] Venkateswarulu, M.; Sinha, S.; Mathew, J.; Koner, R. R.
Quencher displacement strategy for recognition of trivalent
cations through ‘turn-on’ fluorescence signaling of an amino
acid hybrid. Tetrahedron. Lett. 2013, 54, 4683–4688.
[17] Saha, S.; Mahato, P.; Reddy, U. G.; Suresh, E.; Chakrabarty, A.;
Baidya, M.; Ghosh, S. K.; Das, A. Recognition of Hg2+ and Cr3+
in physiological conditions by a rhodamine derivative and its
application as a reagent for cell-imaging studies. Inorg. Chem.
2012, 51, 336–345.
[18] Wang, J. N.; Qi, Q.; Zhang, L.; Li, S. H. Turn-on luminescent
sensing of metal cations via quencher displacement: rational
design of a highly selective chemosensor for chromium(III).
Inorg. Chem. 2012, 51, 13103–13107.
[19] Zhou, Y.; Zhang, J.; Zhang, L.; Zhang, Q.; Ma, T.; Niu, J.
A rhodamine-based fluorescent enhancement chemosensor for
[30] Zubarovskii, V.; Briks, Yu. Reaction of 2-acetylbenzothiazole
with 2-formylbenzothiazole. Chem. Heterocycl. Compd. 1982,
18, 485–488.
[31] Benesi, H. A.; Hildebrand, J. H. A spectrophotometric investiga-
tion of the interaction of iodine with aromatic hydrocarbons.
J. Am. Chem. Soc. 1949, 71, 2703–2707.
[32] Job, P. Formation and stability of inorganic complexes in
solution. Ann. Chim. 1928, 9, 113–203.
Supplemental Material: The online version of this article offers
Brought to you by | University of Gothenburg
Authenticated
Download Date | 9/13/17 8:31 AM