Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
5
6
7
174, 108.
H. Yanai, T. Yoshino, M. Fujita, H. Fukaya, A. Kotani, F. Kusu, and T.
Taguchi, Angew. Chem. Int. Ed., 2013, 52, 1560.
(a) H. Yanai, Y. Takahashi, H. Fukaya, Y. Dobashi, and T. Matsumoto,
Chem. Commun., 2013, 49, 10091; (b) H. Yanai, R. Takahashi, Y.
Takahashi, A. Kotani, H. Hakamata, and T. Matsumoto, Chem. Eur. J.,
2017, 23, 8203.
H. Yanai, P. Almendros, S. Takahashi, C. Lázaro-Milla, B. Alcaide, and
T. Matsumoto, Chem. Asian. J., 2018, 13, 1956.
(Figure 2B). A vinyl-type carbocation INT-1’ corresponding to
INT-1 shown in Scheme 3 was found as a local minimum species.
Transition state geometry of the 5-endo-dig cyclisation (TS2) is
very close to INT-1’ and the activation barrier to give INT-2’ is
1.9 kcal mol–1 (from INT-1’). In INT-1’, the C4–C2’ distance
(275.1 pm) is obviously shorter than the C4–C3’ distance (320.7
pm). The low activation barrier and the geometric similarity
between INT-1’ and TS2 support that the 5-endo-dig path rather
than the 6-endo-dig path is kinetically favourable. In addition,
the (2+2) cycloaddition path requires much higher activation
energy (6.3 kcal mol–1 from INT-1’; see, ESI). The following ring-
expansion reaction (TS3) to give INT-3’ is highly exothermic and
requires small activation energy (7.0 kcal mol–1 from INT-2’). For
each step on this pathway, the simulation well agrees with a fact
that the bis(triflyl)ethylation/benzannulation reaction proceeds
under really mild conditions.
DOI: 10.1039/C9CC08930F
8
9
H. Yanai, T. Suzuki, F. Kleemiss, H. Fukaya, Y. Dobashi, L. A. Malaspina,
S. Grabowsky, T. Matsumoto, Angew. Chem. Int. Ed., 2019, 58, 8839.
10 (a) J. D. Roberts, R. L. Webb, and E. A. McElhill, J. Am. Chem. Soc.,
1950, 72, 408; (b) O. Exner and S. Böhm, New J. Chem., 2008, 32, 1449.
(c) G. Raabe, H.-J. Gais, and J. Fleischhauer, J. Am. Chem. Soc., 1996,
118, 4622.
11 (a) B. Alcaide, P. Almendros, I. Fernández, and C. Lázaro-Milla, Chem.
Commun., 2015, 51, 3395; (b) B. Alcaide, P. Almendros, and C. Lázaro-
Milla, Chem. Eur. J., 2016, 22, 8998; (c) B. Alcaide, P. Almendros, and
C. Lázaro-Milla, Adv. Synth. Catal., 2017, 359, 2630.
In conclusion, we successfully developed sequential
bis(triflyl)ethylation/benzannulation reaction to produce
bis(triflyl)ethylated carbazoles from indolyl-3-alkyn-1-ols. This
molecular transformation is triggered by regioselective
electrophilic attack of Tf2C=CH2, which is generated from the 2-
fluoropyridinium salt 2a in an in-situ manner, on the alkyne
moiety of the substrates. The fact that the reaction well
proceeds without any catalyst evidences notably high
electrophilicity of non-cationic Tf2C=CH2. In vinyl-type
carbocations thus generated, the ring-closing reaction between
the cationic carbon atom and indole C2’ atom predominantly
takes place. This event clearly shows chemically inert properties
of [Tf2CR]– in the chemical reaction.
12 B. Alcaide, P. Almendros, and C. Lázaro-Milla, Chem. Commun., 2015,
51, 6992.
13 (a) H. Yanai, M. Fujita, and T. Taguchi, Chem. Commun., 2011, 47,
7245; (b) H. Yanai, H. Ogura, H. Fukaya, A. Kotani, F. Kusu, and T.
Taguchi, Chem. Eur. J., 2011, 17, 11747.
14 For selected reviews, see: (a) M. Li, Chem. Eur. J., 2019, 25, 1142; (b)
X. Zhang and S. Ma, Isr. J. Chem., 2018, 58, 608; (c) G. Sathiyan, E. K.
T. Sivakumar, R. Ganesamoorthy, R. Thangamuthu, and P. Sakthivel,
Tetrahedron Lett., 2016, 57, 243; (d) A. W. Schmidt, K. R. Reddy, and
H.-J. Knölker, Chem. Rev., 2012, 112, 3193; (e) J. Roy, A. K. Jana, and
D. Mal, Tetrahedron, 2012, 68, 6099; (f) H. J. Jiang, J. Sun, and J. L.
Zhang, Curr. Org. Chem., 2012, 16, 2014; (g) J. Li and A. G. Grimsdale,
Chem. Soc. Rev., 2010, 39, 2399; (h) T. Janosik, N. Wahlstrom, and J.
Bergman, Tetrahedron, 2008, 64, 9159; (i) H.-J. Knölker and K. R.
Reddy, Chemistry and Biology of Carbazole Alkaloids, in The Alkaloids,
vol. 65, pp 1–430, Ed. G. A. Cordell, Academic Press, Amsterdam,
2008.
15 (a) Y. Qiu, W. Kong, C. Fu, and S. Ma, Org. Lett., 2012, 14, 6198; (b) A.
S. K. Hashmi, W. Yang, and F. Rominger, Chem. Eur. J., 2012, 18, 6576;
(c) Y. Qiu, J. Zhou, C. Fu, and S. Ma, Chem. Eur. J., 2014, 20, 14589; (d)
J. Zhou, Y. Qiu, J. Li, C. Fu, X. Zhang, and S. Ma, Chem. Commun., 2017,
53, 4722.
Financial support for this work by AEI (MICIU) and FEDER
(Project PGC2018-095025-B-I00) and KAKENHI (17K08224) is
gratefully acknowledged. I. M. thanks MINECO for a predoctoral
contract. We are grateful to M. Moyano for preliminary studies,
Dr. M. P. Ruiz and Dr. C. Lázaro-Milla for helpful discussions, and
Prof. B. Alcaide for continued support.
16 The most carbon acids were purified by column chromatography on
acidic or Et3N-pretreated silica gel. Therefore, chemical yields refer to
the weight of isolated salts (see, ESI).
17 L. L. Barber Jr and R. J. Koshar, U.S. Pat., 3 962 342, 1976.
18 (a) T. Akiyama and K. Mori, Chem. Rev., 2015, 115, 9277; (b) C. H.
Cheon and H. Yamamoto, Chem. Commun., 2011, 47, 3043.
19 For selected examples, see: (a) K. Ishihara, A. Hasegawa, and H.
Yamamoto, Angew. Chem. Int. Ed. 2001, 40, 4077; (b) A. Hasegawa, Y.
Naganawa, M. Fushimi, K. Ishihara, and H. Yamamoto, Org. Lett.,
2006, 8, 3175; (c) A. Takahashi, H. Yanai, and T. Taguchi, Chem.
Commun., 2008, 2385; (d) H. Yanai, O. Kobayashi, K. Takada, T. Isono,
T. Satoh, and T. Matsumoto, Chem. Commun., 2016, 52, 3280. (e) T.
Gatzenmeier, M. van Gemmeren, Y. Xie, D. Höfler, M. Leutzsch, and
B. List, Science, 2016, 351, 949; (f) D. Höfler, M. van Gemmeren, P.
Wedemann, K. Kaupmees, I. Leito, M. Leutzsch, J. B. Lingnau, and B.
List, Angew. Chem. Int. Ed., 2017, 56, 1411.
Conflicts of interest
There are no conflicts of interest to declare.
Notes and references
1
(a) W. Schlenk and J. Holtz, Ber. Dtsch. Chem. Ges., 1916, 49, 603; (b)
S. Harder, Chem. Eur. J., 2002, 8, 3229; (c) M. M. Olmstead and P. P.
Power, J. Am. Chem. Soc., 1985, 107, 2174.
2
(a) E. Le Goff and R. B. LaCount, J. Am. Chem. Soc., 1963, 85, 1354; (b)
S. Matsumura and S. Seto, Chem. Pharm. Bull., 1963, 11, 126; (c) R.
Kuhn and D. Rewicki, Angew. Chem., 1967, 79, 648. (d) K. Okamoto,
T. Kitagawa, K. Takeuchi, K. Komatsu, and K. Takahashi, J. Chem. Soc.,
Chem. Commun., 1985, 173. (e) C. D. Gheewala, M. A. Radtke, J. Hui,
A. B. Hon, T. H. Lambert, Org. Lett., 2017, 19, 4227.
20 P. Almendros, H. Yanai, S. Hoshikawa, C. Aragoncillo, C. Lázaro-Milla,
M. Toledano-Pinedo, T. Matsumoto, and B. Alcaide, Org. Chem.
Front., 2018, 5, 3163.
21 A related spirocyclic intermediate has been recently proposed on the
gold-catalysed synthesis of carbazoles: B. Alcaide, P. Almendros, C.
Aragoncillo, E. Busto, C. G. López-Calixto, M. Liras, V. A. de la Peña
O´Shea, A. García-Sánchez, and H. V. Stone, Chem. Eur. J., 2018, 24,
7620.
3
4
(a) W. B. Farnham, Chem. Rev., 1996, 96, 1633; (b) W. B. Farnham, D.
A. Dixon, J. C. Calabrese, J. Am. Chem. Soc., 1988, 110, 2607.
(a) A. Hasegawa, T. Ishikawa, K. Ishihara, and H. Yamamoto, Bull.
Chem. Soc. Jpn., 2005, 78, 1401; (b) D. Höfler, R. Goddard, J. B.
Lingnau, N. Nöthling, and B. List, Angew. Chem. Int. Ed., 2018, 57,
8326; (c) L. Turowsky and K. Seppelt, Inorg. Chem., 1988, 27, 2135.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins