Communications
conversion into the poly(diacetylene) P2.[16] We attribute the
remarkable difference in polymerizability between 1 and 2 to
the role of the NHAc end group, which is necessary for the
formation of the required parallel b-sheet structures.
[11] a) B. Tieke, G. Wegner, D. Naegele, H. Ringsdorf, Angew. Chem.
1976, 88, 805; Angew. Chem. Int. Ed. Engl. 1976, 15, 764; b) D. N.
Batchelder, S. D. Evans, T. L. Freeman, L. Haeussling, H.
Ringsdorf, H. Wolf, J. Am. Chem. Soc. 1994, 116, 1050; c) K.
Kuriyama, H. Kikuchi, T. Kajiyama, Langmuir 1996, 12, 2283;
d) K. E. Huggins, S. Son, S. I. Stupp, Macromolecules 1997, 30,
5305; e) D. W. Britt, U. G. Hofmann, D. Moebius, S. W. Hell,
Langmuir 2001, 17, 3757.
[12] a) Y. Okawa, M. Aono, Nature 2001, 409, 683; b) A. Miura, S.
De Feyter, M. M. S. Abdel-Mottaleb, A. Gesquiere, P. C. M.
Grim, G. Moessner, M. Sieffert, M. Klapper, K. Müllen, F. C.
De Schryver, Langmuir 2003, 19, 6474; c) S. P. Sullivan, A.
Schnieders, S. K. Mbugua, T. P. Beebe, Langmuir 2005, 21, 1322.
[13] a) J. H. Georger, A. Singh, R. R. Price, J. M. Schnur, P. Yager,
P. E. Schoen, J. Am. Chem. Soc. 1987, 109, 6169; b) A. Singh,
E. M. Wong, J. M. Schnur, Langmuir 2003, 19, 1888; c) S.
Svenson, P. B. Messersmith, Langmuir 1999, 15, 4464; d) Q.
Cheng, M. Yamamoto, R. C. Stevens, Langmuir 2000, 16, 5333;
e) D. A. Frankel, D. F. OꢀBrien, J. Am. Chem. Soc. 1991, 113,
7436; f) J. H. Fuhrhop, P. Blumtritt, C. Lehmann, P. Luger, J. Am.
Chem. Soc. 1991, 113, 7437.
[14] a) S. Okada, S. Peng, W. Spevak, D. Charych, Acc. Chem. Res.
1998, 31, 229; b) U. Jonas, K. Shah, S. Norvez, D. H. Charych, J.
Am. Chem. Soc. 1999, 121, 4580; c) J.-M. Kim, Y. B. Lee, D. H.
Yang, J.-S. Lee, G. S. Lee, D. J. Ahn,J. Am. Chem. Soc. 2005, 127,
17580.
[15] a) S. Bhattacharya, S. N. G. Acharya, Chem. Mater. 1999, 11,
3121; b) M. Masuda, T. Hanada, Y. Okada, K. Yase, T. Shimizu,
Macromolecules 2000, 33, 9233; c) M. George, R. G. Weiss,
Chem. Mater. 2003, 15, 2879; d) Z. Yuan, C.-W. Lee, S.-H. Lee,
Angew. Chem. 2004, 116, 4293; Angew. Chem. Int. Ed. 2004, 43,
4197; e) T. Mori, K. Shimoyama, Y. Fukawa, K. Minagawa, M.
Tanaka, Chem. Lett. 2005, 34, 116.
In conclusion, we have successfully self-assembled the
diacetylene derivative 2 into aggregates with dimensions of a
few nanometers. We have, thus, used b-sheet-type hydrogen-
bonding networks to obtain a well-defined supramolecular
polymer with a double-helical topology. A “1D topochemical
polymerization” was then performed and these supramolec-
ular polymers were converted into the poly(diacetylene) P2.
The obtained poly(diacetylene) features a conjugated back-
bone, a high degree of functionalization with biochemically
relevant substituents, as well as, most importantly, a defined
hierarchical structure. It is these properties which may make
this system attractive as a platform for optoelectronic
applications at the interface with the biosciences.
Received: February 15, 2006
Revised: May 30, 2006
Published online: July 20, 2006
Keywords: b sheets · double helix · hierarchical structures ·
.
self-assembly · topochemical polymerization
[1] a) M. Muthukumar, C. K. Ober, E. L. Thomas, Science 1997, 277,
1225; b) R. Lakes, Nature 1993, 361, 511.
[2] a) J.-M. Lehn, Science 2002, 295, 2400; b) G. M. Whitesides, B.
Grzybowski, Science 2002, 295, 2418.
[16] See the Supporting Information.
[17] In addition to the fibrils, one could observe an ultrathin layer of 2
which was adsorbed onto the HOPG surface.
[3] D. J. Selkoe, Nature 2003, 426, 900.
[4] a) O. S. Makin, L. C. Serpell,J. Mol. Biol. 2004, 335, 1279; b) M.
Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys,
C. C. F. Blake, J. Mol. Biol. 1997, 273, 729; c) J. P. Bond, S. P.
Deverin, H. Inouye, O. M. A. El-Agnaf, M. M. Teeter, D. A.
Kirschner, J. Struct. Biol. 2003, 141, 156; d) C. Goldsbury, P. Frey,
V. Olivieri, U. Aebi, S. A. Müller, J. Mol. Biol. 2005, 352, 282;
e) C. Goldsbury, J. Kistler, U. Aebi, T. Arvinte, G. J. S. Cooper, J.
Mol. Biol. 1999, 285, 33.
[5] a) A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles, T. C.
McLeish, M. Pitkeathly, S. E. Radford, Nature 1997, 386, 259;
b) C. Whitehouse, J. Fang, A. Aggeli, M. Bell, R. Brydson,
C. W. G. Fishwick, J. R. Henderson, C. M. Knobler, R. W.
Owens, N. H. Thomson, D. A. Smith, N. Boden, Angew. Chem.
2005, 117, 2001; Angew. Chem. Int. Ed. 2005, 44, 1965.
[6] H. A. Lashuel, S. R. LaBrenz, L. Woo, L. C. Serpell, J. W. Kelly,
J. Am. Chem. Soc. 2000, 122, 5262.
[18] The apparent height of the fibrils was measured at the maxima of
the helical fine structure. The width was estimated from the
apparent width of 18 nm after correction for the radius of the
SFM tip.
[19] Figure 4c shows the SFM picture recorded after UV irradiation.
This irradiation, however, had no influence on the appearance of
the fibrils in the SFM images.
[20] a) F. R. Salemme, Prog. Biophys. Mol. Biol. 1983, 42, 95; b) A.
Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B.
McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA
2001, 98, 11857.
[7] a) J. M. Smeenk, M. B. J. Otten, J. Thies, D. A. Tirrell, H. G.
Stunnenberg, J. C. M. van Hest, Angew. Chem. 2005, 117, 2004;
Angew. Chem. Int. Ed. 2005, 44, 1968; b) J. H. Collier, P. B.
Messersmith, Adv. Mater. 2004, 16, 907; c) T. S. Burkoth, T. L. S.
Benzinger, D. N. M. Jones, K. Hallenga, S. C. Meredith, D. G.
Lynn, J. Am. Chem. Soc. 1998, 120, 7655; d) T. S. Burkoth,
T. L. S. Benzinger, V. Urban, D. G. Lynn, S. C. Meredith, P.
Thiyagarajan, J. Am. Chem. Soc. 1999, 121, 7429.
[8] a) O. Rathore, D. Y. Sogah, J. Am. Chem. Soc. 2001, 123, 5231;
b) O. Rathore, D. Y. Sogah, Macromolecules 2001, 34, 1477; c) J.
Yao, D. Xiao, X. Chen, P. Zhou, T. Yu, Z. Shao, Macromolecules
2003, 36, 7508.
[9] T. Scheibel, R. Parthasarathy, G. Sawicki, X.-M. Lin, H. Jaeger,
S. L. Lindquist, Proc. Natl. Acad. Sci. USA 2003, 100, 4527.
[10] a) G. Wegner, Z. Naturforsch. B 1969, 24, 824; b) G. Wegner,
Makromol. Chem. 1972, 154, 35.
5386
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 5383 –5386