(Rint = 3.25%). Goodness-of-fit on F2 = 1.102, final R indices [I . 2s(I)],
R1 = 5.35%, wR2 = 15.75% (all data), DMAP was disordered over two
positions (76/24 ratio); 5?(hexane), C58H91AsBN3: monoclinic, space group
˚
to those observed in 3 with distances of 1.567(7) and 1.469(7) A to
the DMAP and Tmp ligands, respectively. The C(ipso)–As–B
bending angle of 113.5(2)u (i.e. sp2-hydridized arsenic), in
conjunction with the planar geometry at boron, reinforces the
assignment of an AsLB double bond in 5.
˚
˚
˚
P21/n, a = 12.7587(13) A, b = 21.142(2) A, c = 20.465(2) A, a = c = 90u, b =
96.813(2)u, V = 5481.3(9) A , Z = 4, m(Mo-Ka) = 0.657 mm21. 37429 total
3
˚
reflections, 9934 independent (Rint = 9.04%). Goodness-of-fit on F2
=
1.089, final R indices [I . 2s(I)], R1 = 7.75%, wR2 = 16.58% (all data).
CCDC 614372–614373. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b609748k
Attempts to form a hitherto unknown SbLB bond were not
successful, because our efforts to prepare the required stibinobor-
ane Ar*Sb(H)–B(Br or Cl)Tmp from TmpBBr2 (or TmpBCl2)18
and the known antimonide, Ar*SbH(Li)10 resulted in the
formation of significant quantities of the olive green distibene11
Ar*SbLSbAr* in place of clean Sb–B bond formation.
In conclusion, a new class of stable main group species featuring
PLB and AsLB bonds was prepared by using a simple donor-
stabilization strategy. Future work will involve the preparation of
new unsaturated bonding environments using this method, as well
as exploring the reaction chemistry of the boranylidene pnictanes 3
and 5.
1 P. P. Power, Chem. Rev., 1999, 99, 3463.
2 For stable group 13 dimetallenes, see: (a) R. J. Wright, A. D. Phillips,
S. Hino and P. P. Power, J. Am. Chem. Soc., 2005, 127, 4794; (b)
H. Schumann, C. Janiak, J. Pickardt and U. Bo¨rner, Angew. Chem., Int.
Ed. Engl., 1987, 26, 789; (c) M. S. Hill, P. B. Hitchcock and
P. B. Pongtavornpinyo, Angew. Chem., Int. Ed., 2005, 44, 4231; (d)
R. J. Wright, A. D. Phillips, N. J. Hardman and P. P. Power, J. Am.
Chem. Soc., 2002, 124, 8538; (e) N. J. Hardman, R. J. Wright,
A. D. Phillips and P. P. Power, J. Am. Chem. Soc., 2003, 125, 2667; (f)
R. J. Wright, A. D. Phillips and P. P. Power, J. Am. Chem. Soc., 2003,
125, 10784. For group 14 dimetallynes, see: (g) P. P. Power, Chem.
Commun., 2003, 2091; (h) A. Sekiguchi, R. Kinjo and M. Ichinohe,
Science, 2004, 305, 1755; (i) N. Wiberg, W. Niedermayer, G. Fischer,
H. No¨th and M. Suter, Eur. J. Inorg. Chem., 2002, 1066. For group 15
analogues, see: (j) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and
T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587; (k) N. Tokitoh, Y. Arai,
R. Okazaki and S. Nagase, Science, 1997, 277, 78; (l) B. Twamley,
C. D. Sofield, M. M. Olmstead and P. P. Power, J. Am. Chem. Soc.,
1999, 121, 3357.
We wish to acknowledge the National Science Foundation and
the Department of Energy for financial support of this work. ER is
grateful to NSERC of Canada for a Postdoctoral Fellowship. The
authors also wish to thank Dr Roland Fischer for acquiring 11B
NMR data, and Drs Geoffrey Spikes, Ha˚kon Hope and Marilyn
Olmstead for crystallographic assistance.
3 G. H. Spikes, J. C. Fettinger and P. P. Power, J. Am. Chem. Soc., 2005,
127, 12232.
4 P. Paetzold, Adv. Inorg. Chem., 1987, 31, 123.
Notes and references
{ All manipulations were carried out under strictly anhydrous and
anaerobic conditions. 3: Pre-cooled toluene (278 uC, 12 mL) was added
to a Schlenk flask containing a mixture of 2 (0.269 g, 0.36 mmol) and
DMAP (0.114 g, 0.90 mmol). Upon the addition of toluene, a pale yellow
solution was observed along with undissolved DMAP. The reaction
mixture was slowly warmed to room temperature and stirred for 2 d to give
a purple solution along with a white precipitate (DMAP?HBr). The
reaction mixture was filtered and the solvent was then removed and the
product was crystallized from hexane (4 mL, ca. 220 uC, 2 weeks) to give
large well-formed rods of 3 that were dark-red in color (0.045 g, 16%). 1H
NMR (C6D6): d 0.72 (d, J = 7.2 Hz, 6H, CH(CH3)2), 0.81 (br, 4H, CH2
Tmp), 1.24 (d, J = 6.9 Hz, 6H, CH(CH3)2), 1.36 (d, J = 6.9 Hz, 12H,
CH(CH3)2), 1.46 (d, J = 6.6 Hz, 6H, CH(CH3)2), 1.51 (s, 12H, CH3 Tmp),
1.58 (m, 2H, CH2 Tmp), 1.82 (s, 6H, N(CH3)2 DMAP), 1.90 (d, J = 6.6 Hz,
6H, CH(CH3)2), 2.93 (septet, 2H, CH(CH3)2), 3.18 (septet, 2H, CH(CH3)2),
3.36 (septet, 2H, CH(CH3)2), 5.55 (br d, 2H, CH DMAP), 7.13 (s, 2H,
ArH), 7.24 (m, 1H, ArH), 7.35 (m, 1H, ArH), 7.36 (s, 2H, ArH), 7.48 (d,
J = 7.5 Hz, ArH), 8.95 (br d, 2H, CH DMAP). 11B NMR (C6D6): d 41.2
(br, Dn1/2 = ca. 800 Hz). 13C{1H} NMR (C6D6): d 14.4, 19.4, 23.1, 23.70,
23.75, 24.6, 24.7, 26.1, 27.7, 31.4, 32.0, 35.0, 38.4, 42.7, 52.7, 120.2, 121.2,
124.0, 125.9, 129.6, 140.6, 145.0, 146.5 (d, J = 5.2 Hz), 147.0, 148.6, 150.6
and 154.5. 31P NMR (C6D6): d 57.3 (s). Mp (uC): 169–172 (dec). UV-vis
(hexane, nm [e, cm21 M21]): 370 (shoulder), 534 [2280].
5 R. T. Paine and H. No¨th, Chem. Rev., 1995, 95, 343.
6 (a) J. D. Watts and L. C. Van Zant, Chem. Phys. Lett., 1996, 251, 119;
(b) M. C. Kerins, N. J. Fitzpatrick and M. T. Nguyen, Polyhedron,
1989, 8, 969; (c) A. M. Arif, A. H. Cowley, M. Pakulski and J. M. Power,
J. Chem. Soc., Chem. Commun., 1986, 889.
7 (a) G. Linti, H. No¨th, K. Polborn and R. T. Paine, Angew. Chem., Int.
Ed. Engl., 1990, 29, 682. For the recent isolation of an unstable
boranylidenephosphane using AlBr3 as a Lewis acid, see: (b) K. Knabel,
T. M. Klapo¨tke, H. No¨th, R. T. Paine and I. Schwab, Eur. J. Inorg.
Chem., 2005, 1099.
8 (a) A. M. Arif, J. E. Boggs, A. H. Cowley, J. G. Lee, M. Pakulski and
J. M. Power, J. Am. Chem. Soc., 1986, 108, 6083; (b) P. Ko¨lle, G. Linti,
H. No¨th, G. L. Wood, C. K. Narula and R. T. Paine, Chem. Ber./Recl.,
1988, 121, 871.
9 B. Glaser and H. No¨th, Chem. Ber., 1986, 119, 3253.
10 B. Twamley, C.-S. Hwang, N. J. Hardman and P. P. Power,
J. Organomet. Chem., 2000, 609, 152.
11 Full details concerning the preparation and structural characterization
of precursors 2 and 4 will appear in a forthcoming publication.
12 DMAP has been used to stabilize monomeric heavy group 13/15
tetraorganyls: (a) F. Thomas, S. Schulz and M. Nieger, Eur. J. Inorg.
Chem., 2001, 161; (b) S. Schulz, Struct. Bonding, 2002, 103, 117. An
interesting DMAP-mediated route to labile heavy group 13–15 bonds
has been reported: ; (c) F. Thomas, S. Schulz, H. Mansikkama¨ki and
M. Nieger, Angew. Chem., Int. Ed., 2003, 42, 5641.
Compound 5 was prepared in a similar manner to 3 except that hexane
was used as the reaction solvent. Data for 5: Red-purple dichroic crystals;
15% yield. H NMR (C6D6): d 0.77 (d, J = 6.6 Hz, 6H, CH(CH3)2), 0.87
1
13 H. No¨th and B. Wrackmeyer, Nuclear Magnetic Resonance
Spectroscopy of Boron Compounds; Springer, Berlin, 1978.
14 For comparison, the B–N distances with the DMAP?BX3 adducts (X =
(br, 4H, CH2 Tmp), 1.22 (d, J = 6.6 Hz, 6H, CH(CH3)2), 1.35 (d, J = 6.9
Hz, 18H, CH(CH3)2), 1.48 (s, 12H, CH3 Tmp), 1.55 (m, 2H, CH2 Tmp),
1.81 (s, 6H, N(CH3)2 DMAP), 1.85 (d, J = 6.9 Hz, 6H, CH(CH3)2), 2.64
(septet, J = 6.9 Hz, 2H, CH(CH3)2), 2.92 (septet, J = 6.6 Hz, 2H,
CH(CH3)2), 3.05 (septet, J = 6.9 Hz, 2H, CH(CH3)2), 5.61 (br d, 2H, ArH
DMAP), 7.14 (d, J = 1.8 Hz, 2H, ArH), 7.24 (m, 1H, ArH), 7.33 (br, 2H,
ArH), 7.48 (d, J = 7.5 Hz, 2H, ArH), 9.42 (br d, 2H, ArH DMAP). 11B
NMR (C6D6): d 51.2 (br, Dn1/2 = ca. 750 Hz). 13C{1H} NMR (C6D6): d
14.4, 19.3, 23.0, 23.8, 24.7, 26.1, 27.2, 27.6, 31.47, 31.53, 32.0, 33.3, 35.0,
38.5, 42.5, 52.1, 120.2, 121.2, 124.6, 129.6, 141.3, 145.0, 147.0, 148.0, 148.7,
154.3 and 154.6. Mp (uC): 147 (chars); 169–173 (melts). UV-vis (hexane, nm
[e, cm21 M21]): 328 (shoulder), 584 [2530].
˚
halogen or C6F5) range from 1.589(5) to 1.602(6) A: M. J. Gerald Lesley,
A. Woodward, N. J. Taylor, T. B. Marder, I. Cazenobe, I. Ledoux,
J. Zyss, A. Thornton, D. W. Bruce and A. K. Kakkar, Chem. Mater.,
1998, 10, 1355.
15 R. A. Bartlett, H. V. Rasika Dias, X. Feng and P. P. Power, J. Am.
Chem. Soc., 1989, 111, 1306.
16 D. C. Pestana and P. P. Power, J. Am. Chem. Soc., 1991, 113, 8426.
17 (a) M. A. Petrie, S. C. Shoner, H. V. Rasika Dias and P. P. Power,
Angew. Chem., Int. Ed. Engl., 1990, 29, 1033; (b) M. A. Petrie,
M. M. Olmstead, H. Hope, R. A. Bartlett and P. P. Power, J. Am.
Chem. Soc., 1993, 115, 3221.
{ Details of the X-ray diffraction studies: 3?(hexane)0.5, C55H84BN3P:
˚
monoclinic, space group P21/n, a = 12.8832(8) A, b = 19.9163(12) A, c =
˚
3
˚
˚
18 H. No¨th and S. Weber, Z. Naturforsch., B: Anorg. Chem. Org. Chem.,
1983, 38, 1460.
20.7647(13) A, a = c = 90u, b = 95.8420(10)u, V = 5300.3(6) A , Z = 4,
m(Mo-Ka) = 0.088 mm21. 46847 total reflections, 12155 independent
3802 | Chem. Commun., 2006, 3800–3802
This journal is ß The Royal Society of Chemistry 2006