Journal of Materials Chemistry C
Paper
8 J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and
H. Yan, Nat. Energy, 2016, 1, 15027.
9 J. Wan, X. Xu, G. Zhang, Y. Li, K. Feng and Q. Peng, Energy
Environ. Sci., 2017, 10, 1739–1745.
10 D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia,
Z. Wang, K. Lu, W. Ma and Z. Wei, Nat. Commun., 2016,
7, 13740.
11 W. Chen and Q. Zhang, J. Mater. Chem. C, 2017, 5, 1275–1302.
12 S. X. Li, W. Q. Liu, C. Z. Li, M. M. Shi and H. Z. Chen, Small,
2017, 13, 1701120.
in which the central phenyl ring was linked to the b-position of
the thiophene ring but fused on its a-position. Two A–D–A type
SMAs l-IDTBTRh and a-IDTBTRh with l-IDT and a-IDT as the
central cores were also synthesized and employed for P3HT-
based organic solar cells. The geometric shape of the l-IDT and
a-IDT subunits plays a pivotal role in governing the optoelec-
tronic properties, the charge mobility, the morphology and the
photovoltaic performance of the resulting acceptors. Both small
molecule acceptors possessed excellent thermal stability and
solubility in common organic solvents and adopted nearly flat
backbone configurations. Compared to a-IDTBTRh, l-IDTBTRh
exhibited a lower bandgap and better charge mobility and
morphology. By blending with P3HT, BHJ OSCs delivered a
decent PCE of 5.38% with a higher Jsc of 8.81 mA cmꢀ2 and a FF
of 71.0% for l-IDTBTRh. Although displaying an inferior photo-
voltaic performance (2.53%), solar cells based on BHJ blends of
a-IDTBTRh and P3HT offer a remarkably high Voc of 0.92 V as a
result of the upshifted LUMO energy level (ꢀ3.59 eV), which is
one of the highest values among the reported IDT based A–D–A
type SMAs. Our work demonstrates that a-IDT is an effective
building block to construct promising A–D–A SMAs with high-
lying LUMO energy levels, providing a strategy to increase Voc in
P3HT-based organic solar cells.
¨
13 J. Hou, O. Inganas, R. H. Friend and F. Gao, Nat. Mater.,
2018, 17, 119–128.
14 Y. Yang, Z. G. Zhang, H. Bin, S. Chen, L. Gao, L. Xue, C. Yang
and Y. Li, J. Am. Chem. Soc., 2016, 138, 15011–15018.
15 P. Cheng, G. Li, X. Zhan and Y. Yang, Nat. Photonics, 2018,
12, 131–142.
16 S. Dai, F. Zhao, Q. Zhang, T.-K. Lau, T. Li, K. Liu, Q. Ling,
C. Wang, X. Lu, W. You and X. Zhan, J. Am. Chem. Soc., 2017,
139, 1336–1343.
17 Y. Liu, Z. Zhang, S. Feng, M. Li, L. Wu, R. Hou, X. Xu,
X. Chen and Z. Bo, J. Am. Chem. Soc., 2017, 139, 3356–3359.
18 Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T. C. Parker, W. Ma,
Y. Sun, C. Wang, D. Zhu, A. J. Heeger, S. R. Marder and
X. Zhan, J. Am. Chem. Soc., 2016, 138, 4955–4961.
19 M. Li, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke,
Z. Xiao, L. Ding, R. Xia, H. Yip, Y. Cao and Y. Chen, Science,
2018, eaat2612.
20 Y. Lin, Q. He, F. Zhao, L. Huo, J. Mai, X. Lu, C. J. Su, T. Li,
J. Wang, J. Zhu, Y. Sun, C. Wang and X. Zhan, J. Am. Chem.
Soc., 2016, 138, 2973–2976.
21 S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf,
C. B. Nielsen, C. H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini,
M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant and
I. McCulloch, Nat. Commun., 2016, 7, 1–11.
22 Y. Wu, H. Bai, Z. Wang, P. Cheng, S. Zhu, Y. Wang, W. Ma
and X. Zhan, Energy Environ. Sci., 2015, 8, 3215–3221.
23 Y. Lin, Z. G. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu and
X. Zhan, Energy Environ. Sci., 2015, 8, 610–616.
24 Y. Lin, J. Wang, S. Dai, Y. Li, D. Zhu and X. Zhan, Adv. Energy
Mater., 2014, 4, 2–6.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This research was financially supported by the National Key
Research and Development Program of China (2017YFB0404501),
the National Basic Research Program of China-Fundamental
Studies of Perovskite Solar Cells (2015CB932200), the Priority
Academic Program Development of Jiangsu Higher Education
Institutions (PAPD) and the Program for Changjiang Scholars
and Innovative Research Team in University (IRT-15R37), and the
NJUPT Culturing Project (NY214080, NY214087 and NY218056).
25 H. Bai, P. Cheng, Y. Wang, L. Ma, Y. Li, D. Zhu and X. Zhan,
J. Mater. Chem. A, 2014, 2, 778–784.
References
26 B. Jia, Y. Wu, F. Zhao, C. Yan, S. Zhu, P. Cheng, J. Mai,
T. K. Lau, X. Lu, C. J. Su, C. Wang and X. Zhan, Sci. China:
Chem., 2017, 60, 257–263.
27 Y. Cai, X. Zhang, X. Xue, D. Wei, L. Huo and Y. Sun, J. Mater.
Chem. C, 2017, 5, 7777–7783.
1 G. Li, R. Zhu and Y. Yang, Nat. Photonics, 2012, 6, 153–161.
2 A. J. Heeger, Adv. Mater., 2014, 26, 10–28.
3 D. Landerer, A. Mertens, D. Freis, R. Droll, T. Leonhard,
A. D. Schulz, D. Bahro and A. Colsmann, njp Flexible
Electron., 2017, 1, 11.
28 W. Wang, C. Yan, T. K. Lau, J. Wang, K. Liu, Y. Fan, X. Lu
and X. Zhan, Adv. Mater., 2017, 29, 1–7.
29 Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu and
X. Zhan, Adv. Mater., 2015, 27, 1170–1174.
4 L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. L. Zhao and
L. P. Yu, Chem. Rev., 2015, 115, 12666–12731.
5 P. Cheng, G. Li, X. W. Zhan and Y. Yang, Nat. Photonics,
2018, 12, 131–142.
30 B. Jia, S. Dai, Z. Ke, C. Yan, W. Ma and X. Zhan, Chem.
Mater., 2018, 30, 239–245.
6 C. Liu, K. Wang, X. Gong and J. H. Alan, Chem. Soc. Rev.,
2016, 45, 4825–4846.
31 Y. Li, X. Liu, F.-P. Wu, Y. Zhou, Z.-Q. Jiang, B. Song, Y. Xia,
7 H. Q. Zhou, Y. Zhang, C. K. Mai, D. Samuel, S. D. Collins,
G. C. Bazan, T.-Q. Nguyen and A. J. Heeger, Adv. Mater.,
2015, 27, 1767–1773.
¨
Z.-G. Zhang, F. Gao, O. Inganas, Y. Li and L.-S. Liao, J. Mater.
Chem. A, 2016, 4, 5890–5897.
This journal is ©The Royal Society of Chemistry 2018
J. Mater. Chem. C, 2018, 6, 12347--12354 | 12353