afford an insoluble dark red solid (4.56 g, 96%). IR (ATR): ν = 3090–3030
(Ar–H), 1703 (C=O st), 1661, 1591, 1576, 1483, 1429, 1404, 1356, 1342,
1254, 1194, 1175, 1136, 1121, 1057 (Ar–I), 1009, 970, 955 cm−1 .
[4] a) K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo,
Y. Kunugi, J. Am. Chem. Soc. 2006, 128, 12604–12605; b) L. Fenenko,
G. Shao, A. Orita, M. Yahiro, J. Otera, S. Svechnikov, C. Adachi,
Chem. Commun. 2007, 2278–2280.
[5] Y. Shimizu, K. Oikawa, K. Nakayama, D. Guillon, J. Mater. Chem.
2007, 17, 4223–4229.
[6] a) V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard,
R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science
2004, 303, 1644–1646; b) M. J. Panzer, C. D. Frisbie, Appl. Phys. Lett.
2006, 88, 203504; c) Z. Wei, W. Hong, H. Geng, C. Wang, Y. Liu,
R. Li, W. Xu, Z. Shuai, W. Hu, Q. Wang, D. Zhu, Adv. Mater. 2010,
22, 2458–2462.
Synthesis of N,N′-Bis[4-(triethoxysilyl)phenyl]-3,4:9,10-tetracarboxylic
acid bisimide (PBI-Si) : DMF (anhydrous; 40 mL) and dry trimethylamine
(anhydrous; 1.67 mL) were added to a mixture of N,N′-bis(4-iodophenyl)-
3,4:9,10-tetracarboxylic acid bisimide (1.59 g, 2.00 mmol) and Rh[(cod)
(CH3CN)2]BF4 (38.0 mg, 0.10 mmol) under argon atmosphere.
Triethoxysilane (1.48 mL, 1.31 g, 8.00 mmol) was added at 0 °C and the
mixture was stirred at 80 °C for 4 h. After removal of the solvents by a
rotary evaporator, chloroform (150 mL) was added to the residue. The
mixture was filtered using Celite and activated carbon, and the filtrate was
washed quickly with water. The organic phase was dried with MgSO4 and
concentrated under reduced pressure. After adding hexane (300 mL),
the resulting precipitate was collected by centrifugation (3500 rpm,
[7] R. J. P. Corriu, Angew. Chem. 2000, 112, 1432–1455; Angew. Chem.
Int. Ed. 2000, 39, 1376–1398.
1
[8] K. J. Shea, D. A. Loy, Chem. Mater. 2001, 13, 3306–3319.
[9] a) F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem.
2006, 118, 3290–3328; Angew. Chem. Int. Ed. 2006, 45, 3216–
3251; b) S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891–908;
c) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40,
789–800.
[10] a) R. J. P. Corriu, J. J. E. Moreau, P. Thepot, M. W. C. Man, C. Chorro,
J.-P. Lère-Porte, J.-L. Sauvajol, Chem. Mater. 1994, 6, 640–649;
b) T. D. de Morais, F. Chaput, J.-P. Boilot, K. Lahlil, B. Darracq,
Y. Lévy, Adv. Mater. Opt. Electron. 2000, 10, 69–79; c) N. Mizoshita,
M. Ikai, T. Tani, S. Inagaki, J. Am. Chem. Soc. 2009, 131,
14225–14227.
5 min) to afford the product as a dark red solid (1.53 g, 88%). H NMR
(400 MHz, CDCl3, δ): 1.30 (t, J = 7.0 Hz, 18H), 3.95 (q, J = 7.0 Hz, 12H),
7.39 (d, J = 8.4 Hz, 4H), 7.89 (d, J = 8.4 Hz, 4H), 8.67 (d, J = 8.5 Hz, 4H),
8.75 ppm(d, J = 8.5 Hz, 4H); 13C NMR (100 MHz, CDCl3, δ): 18.2, 58.8,
123.0, 123.2, 125.7, 128.0, 129.0, 131.1, 132.0, 134.0, 135.8, 136.6,
162.9 ppm; IR (ATR): ν = 3090–3030 (Ar–H), 2974, 2926, 2889, 1705
(C=O st), 1662, 1591, 1578, 1506, 1483, 1431, 1404, 1356, 1344,
1254, 1165, 1149, 1065, 955 cm−1 ; MS (APCI) m/z: [M]+ calcd for
C48H46N2O10Si2, 866.27; found: 866.29.
Preparation and Polycondensation of Dip-Coated Films: Thin films of
PBI-Si were prepared by dipping quartz substrates (1.5 cm × 2.5 cm) in
DMF solutions of PBI-Si (0.1–10 wt%) at a lift-off rate of 1–40 mm min−1
under constant temperature and humidity of 20–22 °C and 55–58%,
respectively. In situ polycondensation of the dip-coated films was conducted
by exposure to the vapor from a 50% aqueous solution of AcOH at 75 °C for
12 h or a 10% aqueous solution of NH3 at 60 °C for 6 h in a sealed vessel.
Conductivity Measurement: Current–voltage (I–V) properties of dip-
coated films were measured using a two-probe method with a Keithley
2636A System SourceMeter. The sample cells were prepared by placing
two copper foil electrodes (3M CU-35C, width: 4–5 mm, gap: 150–210 μm)
onto the films as shown in Figure 6a. In order to obtain I–V properties
of doped films, the sample cells were fixed onto sealed glass vessels
containing a small amount of hydrazine (monohydrate) and exposed to the
saturated hydrazine vapor. Conductivity measurements were carried out
after standing for more than 3 min to stabilize the I–V properties in the
hydrazine vapor. The conductivity (σ) extracted from the linear region of
I–V profiles was calculated using the equation σ = I d/ (V S), where d is the
distance between electrodes, and S is the cross section of the samples.
[11] I. Imae, S. Takayama, D. Tokita, Y. Ooyama, K. Komaguchi,
J. Ohshita, T. Sugioka, K. Kanehira, Y. Harima, Polymer 2009, 50,
6198–6201.
[12] a) G. Cerveau, S. Chappellet, R. J. P. Corriu, B. Dabiens,
J. Le Bideau, Organometallics 2002, 21, 1560–1564; b) G. Cerveau,
R. J. P. Corriu, F. Lerouge, N. Bellec, D. Lorcy, M. Nobili,
Chem. Commun. 2004, 396–397; c) G. Cerveau, R. J. P. Corriu,
E. Framery, F. Lerouge, J. Mater. Chem. 2004, 14, 3019–3025.
[13] a) O. J. Dautel, L.-P. Lère-Porte, J. J. E. Moreau, M. Wong Chi Man,
Chem. Commun. 2003, 2662–2663; b) J. J. E. Moreau, L. Vellutini,
M. Wong Chi Man, C. Bied, P. Dieudonné, J.-L. Bantignies,
J.-L. Sauvajol, Chem. Eur. J. 2005, 11, 1527–1537.
[14] a) J. Pang, L. Yang, D. A. Loy, H. Peng, H. S. Ashbaugh, J. Mague,
C. J. Brinker, Y. Lu, Chem. Commun. 2006, 1545–1547;
b) M. Ohashi, Y. Goto, N. Mizoshita, T. Ohsuna, T. Tani,
S. Inagaki, Bull. Chem. Soc. Jpn. 2009, 82, 1035–1038.
[15] a) L. Yang, H. Peng, K. Huang, J. T. Mague, H. Li, Y. Lu, Adv. Funct.
Mater. 2008, 18, 1526–1535; b) H. Peng, Y. Lu, Adv. Mater. 2008, 20,
797–800.
Supporting Information
[16] a) S.-W. Tam-Chang, L. Huang, Chem. Commun. 2008, 1957–1967;
b) F. Würthner, Chem. Commun. 2004, 1564–1579; c) R. A. Cormier,
B. A. Gregg, Chem. Mater. 1998, 10, 1309–1319; d) A. Wicklein,
A. Lang, M. Muth, M. Thelakkat, J. Am. Chem. Soc. 2009, 131,
14442–14453.
[17] The PBI-Si fi lms for XRD measurements were prepared using a
10 wt% solution of PBI-Si in DMF in order to increase the film
thickness.
Supporting Information is available from the Wiley Online Library or
from the author.
Acknowledgements
The authors thank Dr. Yasutomo Goto for the TEM measurements.
[18] The thermal stability of the oriented films up to 350 °C was con-
firmed by polarizing optical microscopy. The high thermal stability
of the PBI–silica hybrids was also confirmed by thermogravimetric
analysis. Bulk decomposition of the PBI–silica hybrids occurred at
550–650 °C. See Figure S5 in the Supporting Information.
[19] Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao, L. Zang, J. Am. Chem.
Soc. 2007, 129, 6354–6355.
[20] Doping of the PBI materials with hydrazine resulted in a PBI ani-
onic radical that exhibited absorption bands at 600–1000 nm. See
Figure S4 in the Supporting Information.
Received: February 26, 2011
Published online: July 19, 2011
[1] J. E. Anthony, Angew. Chem. 2008, 120, 460–492; Angew. Chem. Int.
Ed. 2008, 47, 452–483.
[2] a) A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. 1998, 110,
416–443; Angew. Chem. Int. Ed. 1998, 37, 402–428; b) A. Heeger,
Chem. Soc. Rev. 2010, 39, 2354–2371.
[3] a) A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille,
Chem. Soc. Rev. 2010, 39, 2577–2632; b) J. Roncali, P. Leriche,
A. Cravino, Adv. Mater. 2007, 19, 2045–2060.
[21] B. A. Gregg, R. A. Cormier, J. Am. Chem. Soc. 2001, 123,
7959–7960.
©
3296 wileyonlinelibrary.com
2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Funct. Mater. 2011, 21, 3291–3296