JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
of polymers P1–P3 with current density (J ), open circuit
006-MY2, NSC 99-2221-E-009-008-MY2, and National Chiao
Tung University through 97W807 are acknowledged. The pow-
der XRD measurements are supported by beamline BL13A
(charged by Ming-Tao Lee) of the National Synchrotron Radia-
tion Research Center (NSRRC), in Taiwan.
sc
voltage (Voc), and fill factor (FF) in the range of 2.02 to 2.27
2
mA/cm , 0.71 to 0.90 V, and 31 to 33%, respectively. The
photovoltaic properties of the PSC devices containing fused
dithienothiophene-based polymers P1–P3 were dependent
on the solubility and film-forming quality of the polymers.
As mentioned in our introductory content, some donor poly-
mers containing dithienothiophene units (designed and pre-
REFERENCES AND NOTES
1
2(b)
12(a)
pared by Millefiorini et al.,
et al.
Gong et al.,
) illustrated lower open circuit voltages (ꢂ 0.8 V)
and PCE values (ꢂ 0.4%) than those of P3, even certain do-
and Zhang
1
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Sci-
1
5(a)
ence 1995, 270, 1789–1791.
2
Thompson, B. C.; Frechet, J. M. J. Angew. Chem. Int. Ed.
ꢀ
1
1(a),14
nor-acceptor copolymers
have worse photovoltaic
Engl. 2008, 47, 58–77.
properties than these developed polymers. Among these PSC
3 Coffey, D. C.; Reid, O. G.; Rodovsky, D. B.; Bartholomew, G.
P.; Ginger, D. S. Nano Lett. 2007, 7, 738–744.
devices containing P1–P3 in Figure 7, polymer P3 gave the
2
best performance of PCE ¼ 0.61% with Jsc ¼ 2.26 mA/cm ,
4 (a) Moul eꢀ , A. J.; Meerholz, K. Adv. Mater. 2008, 20, 240–245;
(
1
b) Li, L.; Lu, G. H.; Yang, X. J. Mater. Chem. 2008, 18,
984–1990; (c) Chang, Y. M.; Wang, L.; J. Phys. Chem. C 2008,
V
¼ 0.90 V, and FF ¼ 31%. The V values are normally
oc
oc
related to the HOMO energy levels of the polymers and
the LUMO energy levels of the acceptors (e.g., PCBM).
3
0
112, 17716–17720; (d) Yao, Y.; Hou, J. H.; Xu, Z.; Li, G.; Yang,Y.
Adv. Funct. Mater. 2008, 18, 1783–1789.
Though the HOMO energy levels of P1–P3 were similar, the
Voc value of P3 was noticeably higher than those of P1–P2.
Therefore, the highest PCE value of P3 is associated with its
highest Voc value and highest crystallinity induced by H-
bonds.
5
(a) Liang, Y.; Feng, D.; Wu, Y.; Tsai, S. T.; Li, G.; Ray, C.; Yu,
L. J. Am. Chem. Soc. 2009, 131, 7792–7799; (b) Hou, J.; Chen,
H. Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am.
Chem. Soc. 2009, 131, 15586–15587; (c) Park, S. H.; Roy, A.;
Beaupr eꢀ , S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.;
Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3,
2
97–302; (d) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.;
CONCLUSIONS
Ray, C.; Yu, L. Adv. Mater. 2010, 22, 135–138; (e) Chen, H. Y.;
Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.;
Li, G. Nat. Photonics 2009, 3, 649–653.
We have successfully synthesized three dithienothiophene/
carbazole-based conjugated polymers (P1–P3) by Suzuki
coupling reaction. Interestingly, P1–P3 exhibited reversible
electrochromism during the oxidation processes of cyclic vol-
tammogram studies. Among P1–P3, polymer P3 (with
H-bonds) revealed the best electrochromic property with the
most noticeable color change. In powder X-ray diffraction
6
(a) Scharber, M. C.; M u¨ hlbacher, D.; Koppe, M.; Denk, P.;
Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18,
89–794; (b) G u¨ nes, S.; Neugebauer, H.; Sariciftci, N. S. Chem.
Rev. 2007, 107, 1324–1338.
7
7
(a) Lia, J.; Grimsdale, A. C. Chem. Soc. Rev. 2010, 39,
2
399–2410; (b) Tamura, K.; Shiotsuki, M.; Kobayashi, N.;
(
XRD) measurements, these polymers exhibited obvious dif-
Masuda, T.; Sanda, F. J. Polym. Sci. Part A: Polym. Chem.
2009, 47, 3506–3517; (c) Blouin, N.; Michaud, A.; Leclerc, M.
Adv. Mater. 2007, 19, 2295–2300.
fraction features indicating distinct bilayered packings
between polymer backbones and similar p-p stacking
between layers in the solid state. Compared with the XRD
data of P2 (without H-bands), H-bonds of P3 induced a
higher crystallinity in the small angle region (corresponding
to a higher ordered bilayered packings between polymer
backbones), but with a similar crystallinity in the wide angle
8 (a) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc,
M. Adv. Funct. Mater. 2006, 16, 1694–1704; (b) Fu, Y.; Kim, J.;
Siva, A.; Shin, W. S.; Moon, S. J.; Park, T. J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 4368–4378.
9
(a) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
Neaguplesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M.
J. Am. Chem. Soc. 2008, 130, 732–742; (b) Zou, Y.; Gendron,
D.; A ¨ı ch, R. B.; Najari, A.; Tao, Y.; Leclerc, M. Macromolecules
2009, 42, 2891–2894; (c) Qin, R. P.; Li, W. W.; Li, C. H.; Du, C.;
Veit, C.; Schleiermacher, H. F.; Andersson, M.; Bo, Z. S.; Liu, Z.
P.; Ingan a€ s, O.; Wuerfel, U.; Zhang, F. L. J. Am. Chem. Soc.
region indicating
a comparable p-p stacking distance
between layers. The potential applications of P1–P3 in bulk
heterojunction photovoltaic solar cells (PSCs) were further
investigated, where the PSC device containing P3 blended
with PCBM (by a weight ratio of 1:1) had the optimum
power conversion efficiency (PCE) up to 0.61% (with J
2
bonded effects, polymer P3 possessed higher thermal
decomposition temperature (T ), glass transition tempera-
ture (T ), RMS smoothness, open circuit voltage (V ), and
2
009, 131, 14612–14613; (d) Zhang, M.; Fan, H.; Guo, X.; He, Y.;
¼
sc
2
Zhang, Z.; Min, J.; Zhang, J.; Zhao, G.; Zhan, X.; Li, Y. Macro-
molecules 2010, 43, 5706–5712.
.26 mA/cm , FF ¼ 29.8%, and V ¼ 0.90 V). Due to the H-
oc
1
0 (a) Ku, S. Y.; Liman, C. D.; Burke, D. J.; Treat, N. D.; Coch-
d
ran, J. E.; Amir, E.; Perez, L. A.; Chabinyc, M. L.; Hawker, C. J.
Macromolecules 2011, 44, 9533–9538; (b) Bae, W. J.; Scilla, C.;
Duzhko, V. V.; Jo, W. H.; Coughlin, E. B. J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 3260–3271.
g
oc
PCE value than P2. These polymers demonstrate a novel
family of conjugated polymers along the path toward achiev-
ing the electrochromic and PSC applications.
11 (a) Zhang, S. M.; Guo,Y. L.; Fan, H. J.; Liu, Y.; Chen, H.
Y.;Yang, G. W.; Zhan, X. W.; Liu, Y. Q.; Li, Y. F.; Yang, Y. J.
Polym. Sci. Part A: Polym. Chem. 2009, 47, 5498–5508; (b) Li, K.
C.; Hsu, Y. C.; Lin, J. T.; Yang, C. C.; Wei, K. H.; Lin, H. C. J.
Polym. Sci. Part A: Polym. Chem. 2009, 47, 2073–2092; (c) Li, K.
C.; Huang, J. H.; Hsu, Y. C.; Huang, P. J.; Chu, C. W.; Lin, J. T.;
ACKNOWLEDGMENTS
The financial supports of this project provided by the National
Science Council of Taiwan (ROC) through NSC 99-2113-M-009-
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 000, 000–000
11