Organometallics
Article
trans-anti rotamers). 1H NMR (500 MHz, CDCl3): δ (both rotamers)
7.54−7.45 (m, 2 H, Ar-H), 7.38−7.29 (m, 2 H, Ar-H), 7.24−7.15 (m,
REFERENCES
■
(1) (a) Herrmann, W. A.; Kocher, C. Angew. Chem., Int. Ed. 1997, 36,
2162. (b) Bourissou, D.; Guerret, O.; Gabbaı, F. P.; Bertrand, G.
Chem. Rev. 2000, 100, 39. (c) Herrmann, W. A. Angew. Chem., Int. Ed.
2002, 41, 1290. (d) N-Heterocyclic Carbenes in Synthesis; Nolan, S. P.,
3
̈
4 H, Ar-H), 5.59−5.40 (m, 4 H, NCH2), 4.97 (d, JH−H = 8 Hz, 4 H,
̈
NCH2), 3.49−3.36 (m, 1 H, SCH), 3.30−3.19 (m, 1 H, SCH), 3.08−
2.95 (m, 2 H, CH), 2.89−2.73 (m, 8 H, SCH2, CH2), 1.34−1.29 (m,
12 H, CH3), 1.27−1.21 (m, 12 H, CH3). 13C{1H} NMR (125 MHz,
CDCl3): δ (both rotamers) 184.0, 183.9 (Ccarbene), 136.3, 136.1, 135.5,
135.4, 122.8, 111.0, 111.0, 110.7, 110.6 (Ar-C), 56.2, 56.1, 47.8, 47.7
(NCH2), 35.8 (SCH), 30.2, 29.9, 29.5, 28.9, 28.7 (SCH2, CH, CH2),
24.1, 24.1 (CH3), 21.7, 21.7 (CH3). MS (ESI): m/z 719 [M − Br]+.
Despite our best efforts, no matching elemental analysis could be
obtained for this complex.
General Procedure for Suzuki−Miyaura Cross-Couplings. A
Schlenk tube was charged with precatalyst (10 μmol, 1.0 mol %),
triphenylphosphine (5.2 mg, 20 μmol, 2.0 mol %), phenylboronic acid
(158 mg, 1.30 mmol, 1.30 equiv), potassium phosphate hydrate (461
mg, 2.00 mmol, 2.00 equiv), and the respective bromo- or chloroarene
if it was a solid (1.00 mmol, 1.00 equiv) under an inert nitrogen
atmosphere. Anhydrous toluene (3 mL) was added, followed by
bromo- or chloroarene if it was a liquid (1.00 mmol, 1.00 equiv). The
Schlenk tube was immersed into an oil bath preheated to 70 °C, and
the mixture was allowed to react for 2 h. After this time, the Schlenk
tube was taken out of the oil bath, the solution was diluted with
dichloromethane (10 mL), and decane as an internal standard was
added. Samples were analyzed by GC-MS.
Computational Methods. All calculations were carried out using
hybrid density functional theory (DFT) employing the B3LYP
functional22 and the Gaussian 09 software.31 The nature of all
stationary points was confirmed by frequency analysis, and all
geometries were found to represent minima on the potential energy
surface. For the optimization of complex geometries and the
calculation of their Gibbs free energies, all elements were described
with the cc-pVDZ basis set.23 All basis sets were obtained from the
EMSL Basis Set Library.32
X-ray Diffraction Studies. X-ray data were collected with a
Bruker AXS SMART APEX diffractometer, using Mo Kα radiation at
100(2) K, with the SMART suite of programs.33 Data were processed
and corrected for Lorentz and polarization effects with SAINT34 and
for absorption effects with SADABS.35 Structure solution and
refinement were carried out with the SHELXTL suite of programs.36
The structure was solved by direct methods to locate the heavy atoms,
followed by difference maps for the light, non-hydrogen atoms. All
hydrogen atoms were placed at calculated positions. All non-hydrogen
atoms were generally given anisotropic displacement parameters in the
final model. A summary of crystallographic data is given in Figure 3
and the Supporting Information.
́
́
Ed.; Wiley-VCH: Weinheim, Germany, 2007. (e) Dıez-Gonzalez, S.;
Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. (f) Velazquez, H.
D.; Verpoort, F. Chem. Soc. Rev. 2012, 41, 7032. (g) Tornatzky, J.;
Kannenberg, A.; Blechert, S. Dalton Trans. 2012, 41, 8215.
(2) (a) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248,
2247. (b) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815.
̀
(3) (a) Frenking, G.; Sola, M.; Vyboishchikov, S. F. J. Organomet.
Chem. 2005, 690, 6178. (b) Huynh, H. V.; Frison, G. J. Org. Chem.
2013, 78, 328. (c) Bernhammer, J. C.; Frison, G.; Huynh, H. V. Chem.
Eur. J. 2013, 19, 12892.
(4) (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47,
3122. (b) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-
Laponnaz, S.; Ces
́
ar, V. Chem. Rev. 2011, 111, 2705.
ez, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251,
́
(5) (a) Dıez-Gonzal
́
874. (b) Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 6940.
̈
(6) (a) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem.,
Int. Ed. 2010, 49, 8810. (b) Valente, C.; Çalimsiz, S.; Hoi, K. H.;
Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51,
3314. (c) Collado, A.; Balogh, J.; Meiries, S.; Slawin, A. M. Z.;
Falivene, L.; Cavallo, L.; Nolan, S. P. Organometallics 2013, 32, 3249.
(d) Dierick, S.; Dewez, D. F.; Marko,
́
I. E. Organometallics 2014, 33,
677.
(7) (a) Hahn, F. E.; Jahnke, M. C.; Pape, T. Organometallics 2006, 25,
5927. (b) Gaillard, S.; Renaud, J.-L. Dalton Trans. 2013, 42, 7255.
(c) Liu, X.; Braunstein, P. Inorg. Chem. 2013, 52, 7367.
(8) (a) Jeffrey, J. C.; Rauchfuss, T. B. Inorg. Chem. 1979, 18, 2658.
(b) Slone, C. S.; Weinberger, D. A.; Mirkin, C. A. Prog. Inorg. Chem.
1999, 48, 233. (c) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed.
2001, 40, 680. (d) Huynh, H. V.; Yeo, C. H.; Tan, G. K. Chem.
Commun. 2006, 3833.
(9) (a) Nielsen, D. J.; Cavell, K. J.; Skelton, B. W.; White, A. H.
Organometallics 2006, 25, 4850. (b) Warsink, S.; Hauwert, P.; Siegler,
M. A.; Spek, A. L.; Elsevier, C. J. Appl. Organomet. Chem. 2009, 23,
225. (c) Arnold, P. L.; Sanford, M. S.; Pearson, S. M. J. Am. Chem. Soc.
2009, 131, 13912. (d) Bierenstiel, M.; Cross, E. D. Coord. Chem. Rev.
2011, 255, 574. (e) Yuan, D.; Huynh, H. V. Molecules 2012, 17, 2491.
(f) DePasquale, J.; Kumar, M.; Zeller, M.; Papish, E. T. Organometallics
2013, 32, 966. (g) Huynh, H. V.; Lee, C. Dalton Trans. 2013, 42, 6803.
(h) Fliedel, C.; Braunstein, P. J. Organomet. Chem. 2014, 751, 286.
(10) (a) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239.
(b) Pugh, D.; Danopoulos, A. A. Coord. Chem. Rev. 2007, 251, 610.
(c) Lee, H. M.; Lee, C. C.; Cheng, P. Y. Curr. Org. Chem. 2007, 11,
1491. (d) Normand, A. T.; Cavell, K. J. Eur. J. Inorg. Chem. 2008, 2781.
(11) (a) Lin, B.-L.; Liu, L.; Fu, Y.; Luo, S.-W.; Chen, Q.; Guo, Q.-X.
Organometallics 2004, 23, 2114. (b) Rosen, B. M.; Quasdorf, K. W.;
Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V.
Chem. Rev. 2011, 111, 1346. (c) Jana, R.; Pathak, T. P.; Sigman, M. S.
Chem. Rev. 2011, 111, 1417. (d) Yamaguchi, J.; Muto, K.; Itami, K.
Eur. J. Org. Chem. 2013, 19. (e) Han, F.-S. Chem. Soc. Rev. 2013, 42,
5270.
ASSOCIATED CONTENT
■
S
* Supporting Information
Figures giving 1H and 13C NMR spectra for all complexes, CIF
file and a table giving crystallographic data for 5, and tables
giving Cartesian coordinates for the calculated structures. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
(12) (a) Bohm, V. P. W.; Weskamp, T.; Gstottmayr, C. W. K.;
̈
̈
■
Herrmann, W. A. Angew. Chem., Int. Ed. 2000, 39, 1602. (b) Matsubara,
K.; Ueno, K.; Shibata, Y. Organometallics 2006, 25, 3422. (c) Huynh,
H. V.; Jothibasu, R. Eur. J. Inorg. Chem. 2009, 1926. (d) Zhang, C.;
Wang, Z.-X. Organometallics 2009, 28, 6507. (e) Jothibasu, R.; Huang,
K.-W.; Huynh, H. V. Organometallics 2010, 29, 3746. (f) Zhang, K.;
Conda-Sheridan, M.; Cooke, S.; Louie, J. Organometallics 2011, 30,
2546.
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(13) (a) Lee, C.-C.; Ke, W.-C.; Chan, K.-T.; Lai, C.-L.; Hu, C.-H.;
Lee, H. M. Chem. Eur. J. 2007, 13, 582. (b) Ritleng, V.; Oertel, A. M.;
Chetcuti, M. J. Dalton Trans. 2010, 39, 8153. (c) Oertel, A. M.;
Ritleng, V.; Chetcuti, M. J. Organometallics 2012, 31, 2829. (d) Zell,
T.; Fischer, P.; Schmidt, D.; Radius, U. Organometallics 2012, 31, 5065.
We thank the National University of Singapore and the
Singapore Ministry of Education for financial support (WBS R
143-000-483-112 and SINGA scholarship) and the CMMAC
staff of the department of chemistry for technical assistance.
F
dx.doi.org/10.1021/om500484q | Organometallics XXXX, XXX, XXX−XXX