Page 7 of 9
Analytical Chemistry
[9] Wawegama, N. K.; Browning, G. F.; Kanci, A.; Marenda, M. S.;
I.; Hamme, A. T.; Ray, P. C. Aptamer-conjugated theranostic
hybrid graphene oxide with highly selective biosensing and
combined therapy capability. Faraday Discuss 2014, 175, 257-
271.
Markham, P. F. Development of a Recombinant Protein-Based
Enzyme-Linked Immunosorbent Assay for Diagnosis of
Mycoplasma bovis infection in cattle. Clin. Vaccine Immunol.
2014, 21, 196-202.
1
2
3
4
5
6
7
8
[28] Zhang, Y.; Chen, B.; Zhang, L.; Huang, J.; Chen, F.; Yang, Z.;
Yao, J.; Zhang, Z. Controlled assembly of Fe3O4 magnetic
nanoparticles on graphene oxide. Nanoscale 2011, 3, 1446-1450.
[29] Li, Z.; Zhang, X.; Tan, H.; Qi, W.; Wang, L.; Ali, M. C.; Zhang,
H.; Chen, J.; Hu, P.; Fan, C.; Qiu, H. Combustion Fabrication of
Nanoporous Graphene for Ionic Separation Membranes. Adv.
Func. Mater. 2018, 28, 1805026.
[30] Hummers, W. S.; Offeman, R. E. Preparation of Graphitic
Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
[31] Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.; Wang, Z. L.
Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3:
Large-Scale Synthesis, Formation Mechanism, and Properties.
Angew. Chem. Int. Ed. 2005, 117, 4269-4273.
[10] Qi, S.; Liu, W.; Zhang, P.; Wu, J.; Zhang, H.; Ren, H.; Ge, J.;
Wang, P. A colorimetric and ratiometric fluorescent probe for
highly selective detection of glutathione in the mitochondria of
living cells. Sens. Actuat. B 2018, 270, 459-465.
[11] Xie, J.; Zhang, X.; Wang, H.; Zheng, H.; Huang, Y.; Xie, J.
Analytical and environmental applications of nanoparticles as
enzyme mimetics. TRAC-Trend Anal. Chem. 2012, 39, 114-129.
[12] Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A
Promising Candidate for Artificial Enzymes. Accounts Chem.
Res. 2014, 47, 1097-1105.
[13] Wei, H.; Wang, E. Nanomaterials with enzyme-like
characteristics (nanozymes): next-generation artificial enzymes.
Chem. Soc. Rev. 2013, 42, 6060-6093.
[14] Liu, S.; Lu, F.; Xing, R.; Zhu, J.-J. Structural Effects of Fe3O4
Nanocrystals on Peroxidase-Like Activity. Chem. Eur. J. 2011,
17, 620-625.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[32] Liu, Y.; Fu, Y.; Liu, L.; Li, W.; Guan, J.; Tong, G. Low-Cost
Carbothermal Reduction Preparation of Monodisperse Fe3O4/C
Core–Shell Nanosheets for Improved Microwave Absorption.
ACS Appl. Mater. Inter. 2018, 10, 16511-16520.
[15] Zhang, X.; Mao, X.; Li, S.; Dong, W.; Huang, Y. Tuning the
oxidase mimics activity of manganese oxides via control of their
growth conditions for highly sensitive detection of glutathione.
Sens. Actuat. B 2018, 258, 80-87.
[16] Zheng, A.-X.; Cong, Z.-X.; Wang, J.-R.; Li, J.; Yang, H.-H.;
Chen, G.-N. Highly-efficient peroxidase-like catalytic activity of
graphene dots for biosensing. Biosens. Bioelectron. 2013, 49,
519-524.
[17] Kumar, V.; Bano, D.; Singh, D. K.; Mohan, S.; Singh, V. K.;
Hasan, S. H. Size-Dependent Synthesis of Gold Nanoparticles
and Their Peroxidase-Like Activity for the Colorimetric
Detection of Glutathione from Human Blood Serum. ACS
Sustain. Chem. Eng. 2018, 6, 7662-7675.
[18] Zhang, Y.; Zhang, W.; Chen, K.; Yang, Q.; Hu, N.; Suo, Y.;
Wang, J. Highly sensitive and selective colorimetric detection of
glutathione via enhanced Fenton-like reaction of magnetic metal
organic framework. Sens. Actuat. B 2018, 262, 95-101.
[19] Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Porous Graphene
Materials for Advanced Electrochemical Energy Storage and
Conversion Devices. Adv. Mater. 2014, 26, 849-864.
[20] Zeng, Z.; Huang, X.; Yin, Z.; Li, H.; Chen, Y.; Li, H.; Zhang,
Q.; Ma, J.; Boey, F.; Zhang, H. Fabrication of Graphene
Nanomesh by Using an Anodic Aluminum Oxide Membrane as
a Template. Adv. Mater. 2012, 24, 4138-4142.
[21] Li, Z.; Liu, Y.; Zhao, Y.; Zhang, X.; Qian, L.; Tian, L.; Bai, J.;
Qi, W.; Yao, H.; Gao, B.; Liu, J.; Wu, W.; Qiu, H. Selective
Separation of Metal Ions via Monolayer Nanoporous Graphene
with Carboxyl Groups. Anal. Chem. 2016, 88, 10002-10010.
[22] Liu, Y.; Liu, X.; Guo, Z.; Hu, Z.; Xue, Z.; Lu, X. Horseradish
peroxidase supported on porous graphene as a novel sensing
platform for detection of hydrogen peroxide in living cells
sensitively. Biosens. Bioelectron. 2017, 87, 101-107.
[33] Mi, H.; Yang, X.; Hu, J.; Zhang, Q.; Liu, J. Carbothermal
Synthesis of Nitrogen-Doped Graphene Composites for Energy
Conversion and Storage Devices. Front. Chem. 2018, 6, 501.
[34] Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. One-step
synthesis of superparamagnetic monodisperse porous Fe3O4
hollow and core-shell spheres. J. Mater. Chem. 2010, 20, 1799-
1805.
[35] Bombuwala Dewage, N.; Liyanage, A. S.; Pittman, C. U.;
Mohan, D.; Mlsna, T. Fast nitrate and fluoride adsorption and
magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed
on Douglas fir biochar. Bioresource Technol. 2018, 263, 258-
265.
[36] Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A
Review of Graphene. Chem. Rev. 2010, 110, 132-145.
[37] Wan, J.; Huang, L.; Wu, J.; Xiong, L.; Hu, Z.; Yu, H.; Li, T.;
Zhou, J. Microwave Combustion for Rapidly Synthesizing Pore-
Size-Controllable Porous Graphene. Adv. Func. Mater. 2018, 28,
1800382.
[38] Jiang, H.-B.; Zhang, Y.-L.; Zhang, Y.; Liu, Y.; Fu, X.-Y.; Liu,
Y.-Q.; Wang, C.-D.; Sun, H.-B. Flame treatment of graphene
oxides: cost-effective production of nanoporous graphene
electrode for Lithium-ion batteries. Sci. Rep. 2015, 5, 17522.
[39] Zhang, H.-j.; Qi, S.-d.; Niu, X.-y.; Hu, J.; Ren, C.-l.; Chen, H.-l.;
Chen, X.-g. Metallic nanoparticles immobilized in magnetic
metal–organic frameworks: preparation and application as highly
active, magnetically isolable and reusable catalysts. Catal. Sci.
Tech. 2014, 4, 3013-3024.
[40] Zhang, H.; Chen, Y.; Liang, M.; Xu, L.; Qi, S.; Chen, H.; Chen,
X. Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped
Carbon Dots for Sensitive and Selective Probing Ferric Ions in
Living Cells. Anal. Chem. 2014, 86, 9846-9852.
[41] Zhang, H.; Zhang, B.; Di, C.; Ali, M. C.; Chen, J.; Li, Z.; Si, J.;
Zhang, H.; Qiu, H. Label-free fluorescence imaging of
cytochrome c in living systems and anti-cancer drug screening
with nitrogen doped carbon quantum dots. Nanoscale 2018, 10,
5342-5349.
[42] Li, Y.; Zhang, R.; Tian, X.; Yang, C.; Zhou, Z. Facile synthesis
of Fe3O4 nanoparticles decorated on 3D graphene aerogels as
broad-spectrum sorbents for water treatment. Appl. Surf. Sci.
2016, 369, 11-18.
[43] Combellas, C.; Delamar, M.; Kanoufi, F.; Pinson, J.; Podvorica,
F. I. Spontaneous Grafting of Iron Surfaces by Reduction of
Aryldiazonium Salts in Acidic or Neutral Aqueous Solution.
Application to the Protection of Iron against Corrosion. Chem.
Mater. 2005, 17, 3968-3975.
[23] Song, L.; Zhang, H.; Cai, T.; Chen, J.; Li, Z.; Guan, M.; Qiu, H.
Porous graphene decorated silica as a new stationary phase for
separation of sulfanilamide compounds in hydrophilic interaction
chromatography.
Chinese
Chem.
Lett.
2018,
doi:
10.1016/j.cclet.2018.10.040.
[24] Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.;
Shorubalko, I.; Kye, J.-I.; Lee, C.; Park, H. G. Ultimate
Permeation Across Atomically Thin Porous Graphene. Science
2014, 344, 289-292.
[25] Qin, L.; Ding, R.; Wang, H.; Wu, J.; Wang, C.; Zhang, C.; Xu,
Y.; Wang, L.; Lv, B. Facile synthesis of porous nitrogen-doped
holey graphene as an efficient metal-free catalyst for the oxygen
reduction reaction. Nano Res. 2017, 10, 305-319.
[26] Duan, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. A
facile strategy for the fast construction of porous graphene
frameworks and their enhanced electrosorption performance.
Chem.Commun. 2017, 53, 7465-7468.
[27] Viraka Nellore, B. P.; Pramanik, A.; Chavva, S. R.; Sinha, S. S.;
Robinson, C.; Fan, Z.; Kanchanapally, R.; Grennell, J.; Weaver,
[44] Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S.
Investigation of multiplet splitting of Fe 2p XPS spectra and
bonding in iron compounds. Surf. Interf. Anal. 2004, 36, 1564-
1574.
[45] An, Q.; Lv, F.; Liu, Q.; Han, C.; Zhao, K.; Sheng, J.; Wei, Q.;
Yan, M.; Mai, L. Amorphous Vanadium Oxide Matrixes
7
ACS Paragon Plus Environment