Immobilization of a Perfluoro-Tagged Pd-Catalyst
FULL PAPERS
peratures. This behavior can also explain the high cata- References
lytic activity of the heterogeneous FPS system.
[
1] a) R. Haag, Angew. Chem. 2004, 116, 280–284; Angew.
Chem. Int. Ed. 2004, 43, 278–282; b) D. Astruc, F. Char-
dac, Chem. Rev. 2001, 101, 2991–3024; c) R. Kreiter,
A. W. Kleij, R. J. M. K. Gebbink, G. v. Koten, Top.
Curr. Chem. 2001, 217, 163–199; d) G. E. Oosterom,
J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen,
Angew. Chem. 2001, 113, 1878–1901; Angew. Chem.
Int. Ed. 2001, 40, 1828–1849; e) M. W. P. L. Baars,
E. W. Meijer, Top. Curr. Chem. 2000, 210, 131–182.
2] a) R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K.
Yeung, Acc. Chem. Res. 2001, 34, 181–190; b) A. I.
Cooper, J. D. Londono, G. Wignall, J. B. McClain, E. T.
Samulski, J, S. Lin, A. Dobrynin, M. Rubinstein,
A. L. C. Burke, J. M. J. Fr e´ chet, J. M. DeSimone. Nature,
Experimental Section
Synthesis of Polyglycerol Perfluorononanoic Ester (2)
A suspension of hyperbranched polyglycerol (M ¼5000 g
n
ꢀ
1
[8]
mol
)
(0.315 g, 4.3 mmol of hydroxy groups),
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononanoic acid
[
(
(
2 g, 4.3 mmol) and para-toluenesulfonic acid (pTSA)
0.105 g, 0.7 mmol) in a mixture of toluene (40 mL) and
a,a,a-trifluorotoluene (BTF) (20 mL) was heated to reflux
for 3 days. The water was removed by azeotropic distillation.
After reaction the solvent was removed by evaporation and
the residue was redissolved in perfluorobenzene (5 mL). To
1
997, 389, 368–371.
this solution 1.2 g of basic anion exchange resin, Merck
[3] A. Garcia-Bernab e´ , M. Krämer, B. Olah, R. Haag,
ꢀ
(
4 mmol OH /g) was added and stirred for 4 hours. The resin
Chem. Eur. J. 2004, 10, 2822–2830.
was removed by filtration and the solvent was evaporated in
vacuumto obtain a brownish viscous poly me r 2, yield:
.118 g (85%). H NMR (400 MHz, C F /CDCl ): d¼3.2–5
[4] a) C. C. Tzschucke, C. Markert, W. Bannwarth, A. He-
bel, S. Roller, R. Haag, Angew. Chem. 2002, 114,
4136–4173; Angew. Chem. Int. Ed. 2002, 41, 3694–
4001; b) D. J. Cole-Hamilton, Science 2003, 299, 1702–
1706; c) D. P. Curran, Angew. Chem. 1998, 110, 1230–
1
1
(
6
6
3
1
3
m, CH O, CHO), 5.5 (m, CH O, CHO);
C
NMR
2
2
(
100 MHz, C F /CDCl ): d¼65.7 (m, CH O), 67.8 (m, CH
6
6
3
2
2
O), 68.7 (m, CH O), 69.7 (m, CH O), 72.3 (m, CH O), 74.3
2
2
2
1
255; Angew. Chem. Int. Ed. 1998, 37, 1174–1196;
(
m, CH O), 79.6 (m, CH O), 106.2 (m, CF ), 108.2 (m, CF ),
2 2 2 2
1
d) I. T. Horv a´ th, J. R a´ bai, Science 1994, 266, 72–74.
5] a) G. R. Newkome, C. N. Moorefield, F. Vçgtle, Dendrit-
ic Molecules: Concepts, Syntheses, Perspectives, 2nd edn.,
Wiley-VCH, Weinheim, 2001; b) D. Tomalia, J. M. J. Fr e´ -
chet (Eds.), Dendrimers and other Dendritic Polymers,
John Wiley & Co., London, 2001.
6] a) H. Frey, R. Haag, in: Encyclopedia of Materials, Sci-
ence and Technology, (Eds.: K. H. J. Buschow, R. H,
Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Maja-
han), Elsevier, Oxford, 2001, pp. 3997–4000; b) A. Sun-
der, J. Heinemann, H. Frey, Chem. Eur. J. 2000, 6,
1
1
1
11.6 (m, CF ), 113.8 (m, CF ), 116.3 (t, CF JF-C ¼30 Hz),
2
2
2,
[
[
1
19.2 (t, CF2, JF-C ¼30 Hz), 122.0 (m, CF ), 128.1 (m, CF ),
2
2
30.4 (m, CF ), 106.2 (m, CF ), 108.9 (m, CF ), 111.6 (m,
2
2
2
CF ), 158.6 (m, OCO).
2
General Procedure for Suzuki Coupling Reactions
A 0.001 M solution of perfluoro-tagged catalyst 3 (10 mg,
0.003 mmol) and the dendritic perfluoroester 2 (60 mg,
0.003 mmol) in 3 mL of absolute DMF was prepared by ultra-
sonification for 30 min. Then one equivalent 4-bromoaceto-
phenone, 1.1 equivalent of phenylboronic acid and 2.5 equiva-
lent of sodiumcarbonate were added under argon. The reac-
tion mixture was heated to 808C for 20 hours. The solvent
was evaporated and the residue was dissolved again with a mix-
ture of dimethoxyethane (DME) and water (10% HCl) (2:1).
The insoluble part was filtered, washed with DME/water (2:1)
and recycled for the next run (recovery yield ca. 50%). The
combined DME/water layers were concentrated in vacuum
and extracted three times with chloroform-water. Evaporation
2
499–2506; c) Y. H. Kim, O. W. Webster, J. Am. Chem.
Soc. 1990, 112, 4592–4593.
7] R. Haag, A. Sunder, J.-F. Stumb e´ , J. Am. Chem. Soc.
[
2
000, 122, 2954–2955.
8] a) H. Frey, R. Haag, Rev. Mol. Biotechnol. 2002, 90, 257–
67; b) A. Sunder, R. Mülhaupt, R. Haag, H. Frey, Adv.
[
2
Mater. 2000, 12, 235–239; c) A. Sunder, R. Hanselmann,
H. Frey, R. Mülhaupt, Macromolecules 1999, 32, 4240–
4
9] For recent reviews, see: a) R. Haag, S. Roller, Top. Curr.
Chem. 2004, 242, 1–42; b) R. van Heerbeek, P. C. J.
Kamer, P. W. N. M. Van Leeuwen, J. N. H. Reek, Chem.
Rev. 2002, 102, 3717–3756.
246.
[
of the combined chloroform layers gave the product. The con-
1
version yield was calculated fromthe methyl signals in the
NMR spectra (product/substrate).
H
[
10] a) M. Q. Slagt, S.-E. Stiriba, H. Kautz, R. J. M. Klein
Gebbink, H. Frey, G. van Koten, Organometallics, 2004,
Acknowledgements
2
3, 1525–1532; b) R. van de Coevering, M. Kuil,
R. J. M. Klein Gebbink, G. van Koten, Chem. Commun.
002, 1636–1637; c) D. D. de Groot, B. F. M. de Waal,
A. G.-B. and R. H. are grateful for financial support fromthe
Fonds der Chemischen Industrie and from the Deutsche For-
schungsgemeinschaft. A. G.-B. also wants to thank the Spanish
Ministry of Education and Science for a research contract (Pro-
grama Ram o´ n y Cajal). C. C. T. and W. B. would like to ac-
knowledge generous support fromFluka (Bucks, Switzerland).
We thank Monika Meuris for the TEM measurement.
2
J. N. H. Reek, A. P. H. J. Schenning, P. C. J. Kramer,
E. W. Meijer, P. W. N. M. van Leeuwen, J. Am. Chem.
Soc. 2001, 123, 8453–8458.
[11] a) C. C. Tzschucke, C. Markert, H. Glatz, W. Bannwarth,
Angew. Chem. 2002, 114, 4678–4681; Angew. Chem. Int.
Adv. Synth. Catal. 2005, 347, 1389–1394
asc.wiley-vch.de
ꢀ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1393