D
H. Matsuo et al.
Letter
Synlett
the presence of a terminal methyl group in 3e resulted in a
low chemical yield (11%) of the corresponding 1,3-oxazoli-
din-2-one 4e (entry 5).20 Finally, when the primary amine
3f was used as a substrate, the corresponding 1,3-oxazoli-
din-2-one 4f was not obtained (entry 6).
Figure 3 shows our proposed mechanism for the carbox-
ylative cyclization of propargylic amine 3 catalyzed by the
PAMAM-encapsulated gold nanoparticles 2. First, 3 reacts
with CO2 to form the corresponding carbamic acid 5 in si-
tu.8g Carbamic acid 5 is activated by gold nanoparticle-π in-
teractions of the triple bond and also by interaction of the
hydrogen atom of 5 with a tertiary amine moiety of the
PAMAM, as shown in structure 6.4c The corresponding 1,3-
oxazolidin-2-one 4 is then formed, with the regeneration of 2.
References and Notes
(1) Cuéllar-Franca, R. M.; Azapagic, A. J. CO2 Util. 2015, 9, 82.
(2) (a) Bhanja, P.; Modak, A.; Bhaumik, A. Chem. Eur. J. 2018, 24,
7278. (b) Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A. T.; Sun, L.;
Meng, Y. Prog. Polym. Sci. 2018, 80, 163. (c) Klankermayer, J.;
Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem. Int. Ed.
2016, 55, 7296. (d) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat.
Commun. 2015, 6, 5933. (e) Sakakura, T.; Choi, J.-C.; Yasuda, H.
Chem. Rev. 2007, 107, 2365.
(3) (a) Zhang, Z.; Ye, J.-H.; Wu, D.-S.; Zhou, Y.-Q.; Yu, D.-G. Chem.
Asian J. 2018, 13, 2292. (b) Arshadi, S.; Vessally, E.; Sobati, M.;
Hosseinian, A.; Bekhradnia, A. J. CO2 Util. 2017, 19, 120.
(4) (a) Fujii, A.; Matsuo, H.; Choi, J.-C.; Fujitani, T.; Fujita, K. Tetra-
hedron 2018, 74, 2914. (b) Sadeghzadeh, S. M.; Zhiani, R.;
Emrani, S. Appl. Organomet. Chem. 2018, 32, 3941. (c) Fujii, A.;
Choi, J.-C.; Fujita, K. Tetrahedron Lett. 2017, 58, 4483. (d) Yu, B.;
Kim, D.; Kim, S.; Hong, S. H. ChemSusChem 2017, 10, 1080.
(e) Zhao, D.; Liu, X.-H.; Zhu, C.; Kang, Y.-S.; Wang, P.; Shi, Z.; Lu,
Y.; Sun, W.-Y. ChemCatChem 2017, 9, 4598. (f) Liu, X.; Wang, M.-
Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. ChemSusChem 2017, 10,
1210. (g) Zhao, Y.; Qiu, J.; Li, Z.; Wang, H.; Fan, M.; Wang, J.
ChemSusChem 2017, 10, 2001. (h) Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.;
Fan, M.; Wang, J. ACS Sustainable Chem. Eng. 2016, 4, 5553.
(i) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem.
Int. Ed. 2015, 54, 5399. (j) Maggi, R.; Bertolotti, C.; Orlandini, E.;
Oro, C.; Sartori, G.; Selva, M. Tetrahedron Lett. 2007, 48, 2131.
(k) Kayaki, Y.; Yamamoto, M.; Suzuki, T.; Ikariya, T. Green Chem.
2006, 8, 1019.
R2
R1
AuNP@PAMAM/C
NHR3
2
3
R1
R2
CO2
R2
O
NR3
AuNP in 2
O
R1
R2
R1
4
NR3
O
NR3
HO
O
H
5
O
NR3 (PAMAM) in 2
(5) Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. Tetrahedron
Lett. 1987, 28, 4417.
6
(6) (a) Shi, M.; Shen, Y.-M. J. Org. Chem. 2002, 67, 16. (b) Bacchi, A.;
Chiusoli, G. P.; Costa, M.; Gabriele, B.; Righi, C.; Salerno, G. Chem.
Commun. 1997, 1209.
Figure 3 Proposed mechanism for the carboxylative cyclization of a
propargylic amine 3 catalyzed by the PAMAM-encapsulated gold
nanoparticles 2
(7) (a) Yoshida, M.; Mizuguchi, T.; Shishido, K. Chem. Eur. J. 2012,
18, 15578. (b) Kikuchi, S.; Yoshida, S.; Sugawara, Y.; Yamada, W.;
Cheng, H.-M.; Fukui, K.; Sekine, K.; Iwakura, I.; Ikeno, T.;
Yamada, T. Bull. Chem. Soc. Jpn. 2011, 84, 698. (c) Yoshida, S.;
Fukui, K.; Kikuchi, S.; Yamada, T. Chem. Lett. 2009, 38, 786.
(8) (a) Fujita, K.; Inoue, K.; Sato, J.; Tsuchimoto, T.; Yasuda, H. Tetra-
hedron 2016, 72, 1205. (b) Sadeghzadeh, S. M. Appl. Organomet.
Chem. 2016, 30, 835. (c) Sadeghzadeh, S. M. J. Mol. Catal. A:
Chem. 2016, 423, 216. (d) Hase, S.; Kayaki, Y.; Ikariya, T. ACS
Catal. 2015, 5, 5135. (e) Yuan, R.; Lin, Z. ACS Catal. 2015, 5, 2866.
(f) Fujita, K.; Sato, J.; Inoue, K.; Tsuchimoto, T.; Yasuda, H. Tetra-
hedron Lett. 2014, 55, 3013. (g) Hase, S.; Kayaki, Y.; Ikariya, T.
Organometallics 2013, 32, 5285.
(9) (a) Rodrigues, T. S.; da Silva, A. G. M.; Camargo, P. H. C. J. Mater.
Chem. A 2019, 7, 5857. (b) Liu, L.; Corma, A. Chem. Rev. 2018,
118, 4981. (c) Kaur, R.; Bariwal, J.; Voskressensky, L. G.; Van der
Eycken, E. V. Chem. Heterocycl. Compd. (Engl. Transl.) 2018, 54,
241. (d) Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.;
Romero, A. A. ChemSusChem 2009, 2, 18. (e) Daniel, M.-C.;
Astruc, D. Chem. Rev. 2004, 104, 293.
In summary, by employing the PAMAM-dendrimer-en-
capsulated gold nanoparticles as a catalyst, the carboxyl-
ative cyclization of various propargylic amines proceeded
under CO2 at atmospheric pressure to afford the corre-
sponding 1,3-oxazolidin-2-ones. Gold nanoparticles of di-
ameter 1–2 nm were successfully prepared within the
PAMAM dendrimers. In addition, we found that the catalyt-
ic activity of the PAMAM-dendrimer-encapsulated gold
nanoparticles increased markedly by addition of meso-
porous carbon powder. Studies on further applications of
this catalyst to other reactions are ongoing.
Acknowledgment
This work was based on results obtained from a project (P16010)
commissioned by the New Energy and Industrial Technology Devel-
opment Organization (NEDO).
(10) (a) Savva, I.; Kalogirou, A. S.; Achilleos, M.; Vasile, E.; Koutentis,
P. A.; Krasia-Christoforou, T. Molecules 2016, 21, 1218.
(b) Perea-Buceta, J. E.; Wirtanen, T.; Laukkanen, O.-V.; Mäkelä,
M. K.; Nieger, M.; Melchionna, M.; Huittinen, N.; Lopez-San-
chez, J. A.; Helaja, J. Angew. Chem. Int. Ed. 2013, 52, 11835.
(11) Schröder, F.; Erdmann, N.; Noël, T.; Luque, R.; Van der Eycken, E.
V. Adv. Synth. Catal. 2015, 357, 3141.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E