CrystEngComm
Paper
is found to be much higher than that in 1 (1.79 eV). This
indicates that complex 2 is somehow stabilized in its ground
state. The stabilization may come from strong hydrogen
bonds and C–H⋯O interactions in complex 2. NCI-RDG and
QTAIM analyses of supramolecular interactions clearly
indicate that the stabilization energy originating from
hydrogen bonds in complex 1 is much less than that found
in complex 2. This supports the higher bandgap in 2
compared to 1, and in turn, also supports the higher
conductivity (∼16 times) of complex 1 compared to complex
2. The mobility (μeff) of the complex 1 based device is
therefore also enhanced (by ∼175%) compared to that of the
complex 2 based device.
M. G. B. Drew, P. P. Ray and S. Chattopadhyay, New J. Chem.,
2018, 42, 15295–15305.
4 (a) S. Sonmezoglu, S. Senkul, R. Tas, G. Cankaya and M.
Can, Solid State Sci., 2010, 12, 706–711; (b) Y. S. Ocaka, M.
Kulakcib, T. Kılıcoglua, R. Turanb and K. Akkılıc, Synth.
Met., 2009, 159, 1603–1607.
5 S. Konar, A. Dey, S. R. Choudhury, K. Das, S. Chatterjee, P. P.
Ray, J. Ortega-Castro, A. Frontera and S. Mukhopadhyay,
J. Phys. Chem. C, 2018, 122, 8724–8734.
6 S. Roy, A. Dey, M. G. B. Drew, P. P. Ray and S.
Chattopadhyay, New J. Chem., 2019, 43, 5020–5031.
7 S. Emamian, T. Lu, H. Kruse and H. Emamian, J. Comput.
Chem., 2019, 40, 2868–2881.
Mobility of a complex depends on the concentration of
8 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
2008, A 64, 112–122.
impurities,
temperature
defects
and
electron–hole
concentrations. Higher mobility of any complex always leads
to better device performance. Thus, complex 1 is expected to
be a better candidate for the fast switching electronic device
applications than complex 2.
9 G. M. Sheldrick, SADABS, V2014/5, Software for Empirical
Absorption Correction, University of Göttingen, Institute fur
AnorganischeChemiederUniversitat, Gottingen, Germany,
1999–2003.
10 (a) M. A. Spackman and D. Jayatilaka, CrystEngComm,
2009, 11, 19; (b) F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44,
129; (c) H. F. Clausen, M. S. Chevallier, M. A. Spackman and
B. B. Iversen, New J. Chem., 2010, 34, 193.
Conflicts of interest
There are no conflicts of interest.
11 (a) A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J.
McKinnon and B. Kahr, Cryst. Growth Des., 2008, 8, 4517; (b)
A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J.
McKinnon, M. A. Spackman and C. C. Wilson,
CrystEngComm, 2007, 9, 648; (c) M. A. Spackman and J. J.
McKinnon, CrystEngComm, 2002, 4, 378.
12 S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka
and M. A. Spackman, CrystalExplorer 2.0, University of
Western Australia, Perth, Australia, 2007, http://
Acknowledgements
T. B. thanks the CSIR, India, for awarding a Senior Research
Fellowship [Sanction No. 09/096(0861)/2016-EMR-I]. D. D.
acknowledges the University Grants Commission (UGC), India
for providing the NET-Junior Research Fellowship. S. C.
gratefully acknowledges the UGC-CAS II program, Department
of Chemistry, Jadavpur University, for financial support under
the head [Chemicals/Consumables/Glassware]. One of the
authors (PPR) gratefully acknowledges the financial support
for this work from the SERB-DST, Govt. of India (Sanction No.
EMR/2016/005387, Dated - 24.07.2017) and the RUSA 2.0
program of Jadavpur University.
13 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen
and R. J. Taylor, J. Chem. Soc., Perkin Trans. 1, 1987, 2, S1.
14 J. J. Kinnon, M. A. Spackman and A. S. Mitchell, Acta
Crystallogr., Sect. B: Struct. Sci., 2004, 60, 627.
15 T. Basak, K. Ghosh and S. Chattopadhyay, Polyhedron,
2018, 146, 81–92.
References
16 (a) R. Herchel and Z. Trávníček, Dalton Trans., 2013, 42,
16279–16288; (b) P. Masarova, P. Zoufaly, J. Moncol, I.
Nemec, Jan Pavlik, M. Gembicky, Z. Travnıcek, R. Boca and
I. Salitros, New J. Chem., 2015, 39, 508–519; (c) C. Krüger, P.
Augustín, I. Nemec, Z. Trávnícek, H. Oshio, R. Boca and F.
Renz, Eur. J. Inorg. Chem., 2013, 902–915.
17 (a) T. Basak, K. Ghosh, C. J. Gómez-García and S.
Chattopadhyay, Polyhedron, 2018, 146, 42–54; (b) S. Roy, S.
Halder, A. Dey, K. Harms, P. P. Ray and S. Chattopadhyay,
New J. Chem., 2020, 44, 1285–1293; (c) S. Naiya, M. G. B.
Drew, C. Diaz, J. Ribas and A. Ghosh, Eur. J. Inorg. Chem.,
2011, 4993–4999.
18 (a) D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97,
1354–1358; (b) D. Cremer, Acta Crystallogr., Sect. B: Struct.
Sci., 1984, 40, 498–500.
19 L. Pogany, J. Moncol, J. Pavlik and I. Salitrosm, New J.
Chem., 2017, 41, 5904–5915.
1 (a) Z. Wang, Zi Wang, B. Lin, X. Hu, Y. F. Wei, C. Zhang, B.
An, C. Wang and W. Lin, ACS Appl. Mater. Interfaces, 2017, 9,
35253–35259; (b) B. Bhattacharya, A. Layek, Md. M. Alam,
D. K. Maity, S. Chakrabarti, P. P. Ray and D. Ghoshal, Chem.
Commun., 2014, 50, 7858–7861; (c) S. Roy, A. Dey, P. P. Ray,
J. O. Castro, A. Frontera and S. Chattopadhyay, Chem.
Commun., 2015, 51, 12974–12976.
2 (a) A. Turut and F. Kolleli, J. Appl. Phys., 1992, 72, 818–819;
(b) K. Akkılıç, Y. S. Ocak, T. Kılıçoglu, S. Ilhan and H. Temel,
Curr. Appl. Phys., 2010, 10, 337–341; (c) M. Pattabi, S.
Krishnan, Ganesh and X. Mathew, Sol. Energy, 2007, 81,
111–116.
3 (a) D. Sinha and J. Lee, Nano Lett., 2014, 14, 4660–4664; (b)
G. S. Chunga, K. S. Kima and F. Yakuphanoglu, J. Alloys
Compd., 2010, 507, 508–512; (c) F. Yakuphanoglu, Sol. Energy
Mater. Sol. Cells, 2007, 91, 1182–1186; (d) S. Roy, S. Halder,
This journal is © The Royal Society of Chemistry 2020
CrystEngComm