79
N. Li et al.
Letter
Synlett
(6) (a) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. S. R.; Sheran,
N. K.; Wudl, F. A. Science 2002, 295, 1698. (b) Obadia, M. M.;
Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller,
E. J. Am. Chem. Soc. 2015, 137, 6078. (c) Scott, T. F.; Schneider, A.
D.; Cook, W. D.; Bowman, C. N. Science 2005, 308, 1615.
(7) Ouattara, M.; Wein, S.; Calas, M.; Hoang, Y. V.; Vial, H.; Escale, R.
Med. Chem. Lett. 2007, 17, 593.
(8) El-Faham, A.; Khattab, S. N.; Subirós-Funosas, R.; Albericio, F.
J. Pept. Sci. 2013, 20, 1.
(9) Gupta, B.; Sharma, R.; Singh, N.; Karpichev, Y.; Satnami, M. L.;
Ghosh, K. K. J. Phys. Org. Chem. 2013, 26, 632.
O
OH
P
R2
P
R2
R2
R2
H2O
H
I2
4
2
H2O2
I–
OH
R2
P
R2
HI
O
R2
O
I
6
N
P
Y
R2
R1
O
3
R2
P
R2
(10) Harger, M. J. P. J. Chem. Soc., Perkin Trans. 1 1981, 3284.
(11) Sokolov, V. B.; Ivanov, A. N.; Epishina, T. A.; Martynov, I. V. Bull.
Acad. Sci. USSR Div. Chem. Sci. 1987, 36, 2401.
I
5
N
OH
Y
R1
(12) Sokolov, V. B.; Ivanov, A. N.; Epishina, T. A.; Goreva, T. V.;
Martynov, I. V. Bull. Acad. Sci. USSR Div. Chem. Sci. 1990, 39, 413.
(13) Wu, S. M.; Zhang, X. H. J. Chem. Res. 2007, 3, 146.
1
Scheme 7 A proposed mechanism
(14) Hashemi, S. A.; Khalili, G. Monatsh. Chem. 2015, 146, 965.
(15) Zhu, J.-L.; Wu, S.-T.; Shie, J.-Y. J. Org. Chem. 2014, 79, 3623.
(16) Russell, G. A.; Ros, F.; Hershberger, J.; Tashtoush, H. J. Org. Chem.
1982, 47, 1480.
(17) (a) Jiang, W.; Huang, Y.; Zhou, L.; Zeng, Q. Sci. China Chem. 2019,
62, 1213. (b) Yang, L.; Feng, J.; Qiao, M.; Zeng, Q. Org. Chem.
Front. 2018, 5, 24. (c) Zheng, W.; Tan, M.; Yang, L.; Zhou, L.;
Zeng, Q. Eur. J. Org. Chem. 2020, 1764. (d) Tan, M.; Zheng, W.;
Yang, L.; Zhou, L.; Zeng, Q. Asian J. Org. Chem. 2019, 8, 2027.
(18) (a) Kuchukulla, R. R.; Li, F.; Zhou, L.; He, Z.; Zeng, Q. Green Chem.
2019, 21, 5808. (b) Jiang, W.; Li, N.; Zhou, L.; Zeng, Q. ACS Catal.
2018, 8, 9899. (c) Zhang, L.; Tan, M.; Zhou, L.; Zeng, Q. Tetrahe-
dron Lett. 2018, 59, 2778.
process shows good merits, including using hydrogen per-
oxide as oxidant and molecular iodine as catalyst, easy op-
eration in air, high atom economy, mild conditions, and wa-
ter as the only byproduct. According to our experimental
results and related reports, a mechanism was proposed for
this molecular iodine-catalyzed oxidative cross-coupling
reaction.
Funding Information
(19) (a) Vessally, E.; Didehban, K.; Mohammadi, R.; Hosseinian, A.;
Babazadeh, M. J. Sulfur Chem. 2018, 39, 332. (b) Detty, M. R.;
Zhou, F.; Friedman, A. E. J. Am. Chem. Soc. 1996, 118, 313.
(c) Huang, H.-M.; Li, Y.-J.; Ye, Q.; Yu, W.-B.; Han, L.; Jia, J.-H.; Gao,
J.-R. J. Org. Chem. 2014, 79, 1084. (d) Pavlinac, J.; Zupan, M.;
Stavber, S. J. Org. Chem. 2006, 71, 1027.
This work was supported by the State Key Laboratory of Geohazard
Prevention and Geoenvironment Protection (SKLGP2018Z002).
S
t
a
te
K
e
y
L
a
b
oratory
o
f
Ge
o
h
azardPre
v
e
nti
o
n
a
n
d
G
e
o
e
n
v
i
or
n
m
e
n
t
Protecti
o
n
(S
K
L
G
P
2
0
1
8
Z
0
0
2)
Supporting Information
Supporting information for this article is available online at
(20) General Procedure for I2-Catalyzed Oxidative Coupling of
Ketone Oximes and Dialkyl/Diarylphosphine Oxides
A 25 mL test tube equipped with a magnetic stirrer was charged
with ketone oxime (0.5 mmol), dialkyl/diarylphosphine oxide
(0.6 mmol), H2O2 (0.6 mmol), I2 (5 mol%) and acetonitrile (2
mL). After the test tube was directly sealed in air with a sleeve
stopper septum, the reaction mixture was stirred at 40 °C for 4
h in air. After cooled to room temperature, the reaction mixture
was quenched by the addition of saturated Na2S2O3 solution (10
mL). The reaction mixture was extracted with ethyl acetate (3 ×
15 mL). The combined organic phase was dried over MgSO4, fil-
tered, and concentrated in vacuum on a rotary evaporator. The
resulting residue was purified by silica gel flash chromatogra-
phy, eluting with EtOAc/petroleum ether (3:7 to 5:5), to afford
the desired products 3.
S
u
p
p
orti
n
gInform
a
ti
o
nS
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) (a) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem. Eur.
J. 2018, 24, 12154. (b) Rosa, L. D.; Stasi, R. D.; Longhitano, L.;
D’Andrea, L. D. Bioorg. Chem. 2019, 91, 103160. (c) Liu, W.-X.;
Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z.-X.; Xu, J. J. Org. Chem. 2017,
139, 8678.
(2) (a) Ren, Z.-H.; Zhang, Z.-Y.; Yang, B.-Q.; Wang, Y.-Y.; Guan, Z.-H.
Org. Lett. 2019, 13, 5394. (b) Takai, K.; Katsura, N.; Kunisada, Y.
Chem. Commun. 2001, 1724. (c) Corey, E. J.; Richman, J. E. J. Am.
Chem. Soc. 1970, 92, 5276.
(3) (a) Peng, J.; Zhi, P.; Yuan, Z.; Dan, S.; Hao, Y.; Xiao, Q.; Huang, Y.
Org. Lett. 2019, 21, 2658. (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37,
1603.
(4) (a) Hirata, Y.; Nakamura, S.; Watanabe, N.; Kataoka, O.;
Kurosaki, T.; Anada, M.; Hashimoto, S. Chem. Eur. J. 2006, 12,
8898. (b) Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y. J. Am. Chem.
Soc. 2006, 128, 10370. (c) Maggini, M.; Scorrano, G.; Prato, M.
J. Am. Chem. Soc. 1993, 115, 9798.
(21) Analytical Data for O-(diphenylphosphinoyl)-5-fluoro-1-
indanone oxime (3b)
White solid (164 mg, 90%); mp 171–174 °C. 1H NMR (400 MHz,
CDCl3): = 7.89 (ddd, J = 12.3, 8.3, 1.4 Hz, 4 H), 7.63 (dd, J = 8.6,
5.3 Hz, 1 H), 7.58–7.52 (m, 2 H), 7.51–7.40 (m, 4 H), 6.99 (dd, J =
8.7, 2.2 Hz, 1 H), 6.92 (td, J = 8.8, 2.4 Hz, 1 H), 3.21–3.13 (m, 2 H),
3.11–2.98 (m, 2 H). 13C NMR (101 MHz, CDCl3): = 170.54,
170.42, 166.57, 164.06, 152.06, 151.97, 132.31, 132.28, 132.14,
132.04, 131.40, 130.50, 130.04, 128.55, 128.41, 124.93, 124.83,
115.27, 115.04, 112.45, 112.23, 28.42, 28.40, 28.17. 31P NMR
(162 MHz, CDCl3): = 34.93. HRMS (ESI-TOF): m/z [M + H]+
(5) (a) Feng, X.-H.; Zhang, G.-Z.; Chen, C.-Q.; Yang, M.-Y.; Xu, X.-Y.;
Huang, G.-S. Synth. Commun. 2009, 39, 1768. (b) Kumar, S. C. S.;
Kumar, N. V.; Srinivas, P.; Bettadaiah, B. K. Synthesis 2014, 46,
1847.
© 2020. Thieme. All rights reserved. Synlett 2021, 32, 75–80