Organic Letters
Letter
(6) For a review, see: (a) Gandeepan, P.; Mu
̈
ller, T.; Zell, D.; Cera,
Dr. S. Peruncheralathan, Dr. P. Mal and others at NISER
Bhubaneswar for timely help with some chemicals and helpful
discussions.
G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C-H
Activation. Chem. Rev. 2019, 119, 2192−2452. (b) Kulkarni, A. A.;
Daugulis, O. Direct Conversion of Carbon-Hydrogen into Carbon-
Carbon Bonds by First-Row Transition-Metal Catalysis. Synthesis
2009, 24, 4087−4109. (c) Su, B.; Cao, Z.-C.; Shi, Z.-J. Exploration of
Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in
Unreactive Chemical Bond Activations. Acc. Chem. Res. 2015, 48,
DEDICATION
■
Dedicated to Professor Fraser F. Fleming, Drexel University on
the occasion of his 55th birthday.
886−896. (d) Pototschnig, G.; Maulide, N.; Schnurch, M. Direct
̈
Functionalization of C−H Bonds by Iron, Nickel, and Cobalt
Catalysis. Chem. - Eur. J. 2017, 23, 9206−9232. (e) Liu, J.; Chen, G.;
Tan, Z. Copper-Catalyzed or -Mediated C-H Bond Functionalizations
Assisted by Bidentate Directing Groups. Adv. Synth. Catal. 2016, 358
(8), 1174−1194. (f) Liu, W.; Ackermann, L. Manganese-Catalyzed C-
H Activation. ACS Catal. 2016, 6, 3743−3752. (g) Yoshino;
Matsunaga, S. High-Valent Cobalt-Catalyzed C-H Bond Functional-
ization. Adv. Organomet. Chem. 2017, 68, 197−247. (h) Yoshino, T.;
Ikemoto, H.; Matsunaga, S.; Kanai, M. A Cationic High-Valent
Cp*CoIII Complex for the Catalytic Generation of Nucleophilic
Organometallic Species: Directed C-H Bond Activation. Angew.
Chem., Int. Ed. 2013, 52, 2207−2211. (i) Wang, S.; Chen, S.-Y.; Yu,
X.-Q. C−H Functionalization by High-Valent Cp*Co(III) Catalysis.
Chem. Commun. 2017, 53, 3165−3180.
(7) (a) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak
Coordination as a Powerful Means for Developing Broadly Useful C-
H Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788−802.
(b) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Weakly
Coordinating Directing Groups for Ruthenium (II)- Catalyzed C-H
Activation. Adv. Synth. Catal. 2014, 356, 1461−1479. (c) Das, R.;
Kumar, G. S.; Kapur, M. Amides as Weak Coordinating Groups in
Proximal C-H Bond Activation. Eur. J. Org. Chem. 2017, 2017, 5439−
5459. (d) Kim, J.; Kim, J.; Chang, S. Ruthenium-Catalyzed Direct C-
H Amidation of Arenes Including Weakly Coordinating Aromatic
Ketones. Chem. - Eur. J. 2013, 19, 7328−7333.
(8) (a) Koubachi, J.; El Brahmi, N.; Guillaumet, G.; El Kazzouli, S.
Oxidative Alkenylation of Fused Bicyclic Heterocycles. Eur. J. Org.
Chem. 2019, 2019, 2568−2586. (b) Koubachi, J.; Berteina-Raboin, S.;
Mouaddib, A.; Guillaumet, G. Pd/Cu-Catalyzed Oxidative C-H
Alkenylation of Imidazo[1,2-α]Pyridines. Synthesis 2009, 2009, 271−
276. (c) Kim, D. S.; Park, W. J.; Jun, C. H. Metal-Organic
Cooperative Catalysis in C-H and C-C Bond Activation. Chem. Rev.
2017, 117, 8977−9015. (d) Padala, K.; Jeganmohan, M. Ruthenium-
Catalyzed Ortho -Alkenylation of Aromatic Ketones with Alkenes by
C-H Bond Activation. Org. Lett. 2011, 13, 6144−6147.
(9) (a) Muniraj, N.; Prabhu, K. R. Cobalt(III)-Catalyzed C−H
Activation: Azo Directed Selective 1,4-Addition of ortho C−H Bond
to Maleimides. J. Org. Chem. 2017, 82, 6913−6921. (b) Zhang, Z.;
Han, S.; Tang, M.; Ackermann, L.; Li, J. C−H Alkylations of (Hetero)
Arenes by Maleimides and Maleate Esters through Cobalt(III)
Catalysis. Org. Lett. 2017, 19, 3315−3318. (c) Chen, X.; Ren, J.; Xie,
H.; Sun, W.; Sun, M.; Wu, B. Cobalt(III)-catalyzed 1,4-addition of
C−H bonds of oximes to maleimides. Org. Chem. Front. 2018, 5,
184−188. (d) Mandal, R.; Emayavaramban, B.; Sundararaju, B.
Cp*Co(III)-Catalyzed C-H Alkylation with Maleimides Using
Weakly Coordinating Carbonyl Directing Groups. Org. Lett. 2018,
20, 2835−2838. (e) Muniraj, N.; Prabhu, K. R. Cobalt(III)-Catalyzed
[4 + 2] Annulation of N-Chlorobenzamides with Maleimides. Org.
Lett. 2019, 21, 1068−1072. (f) Jeganmohan, M.; Manoharan, R.
Alkylation, Annulation and Alkenylation of Organic Molecules with
Maleimides via Transition-Metal-Catalyzed C-H Bond. Asian J. Org.
REFERENCES
■
(1) (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem.
2014, 57, 5845−5859. (b) For recent reviews on synthesis of ergot
alkaloids, see: (c) Liu, H.; Jia, Y. Ergot alkaloids: synthetic approaches
to lysergic acid and clavine alkaloids. Nat. Prod. Rep. 2017, 34, 411−
432. (d) McCabe, S. R.; Wipf, P. Total Synthesis, Biosynthesis and
Biological Profiles of Clavine Alkaloids. Org. Biomol. Chem. 2016, 14,
5894−5913.
(2) For a review, see: (a) Sandtorv, A. H. Transition Metal-
Catalyzed C-H Activation of Indoles. Adv. Synth. Catal. 2015, 357,
2403−2435. For key seminal publications, see: (b) Wang, X.; Lane,
B. S.; Sames, D. Direct C-Arylation of Free (NH)-Indoles and
Pyrroles Catalyzed by Ar-Rh(III) Complexes Assembled in Situ. J.
Am. Chem. Soc. 2005, 127, 4996−4997. (c) Stuart, D. R.; Villemure,
E.; Fagnou, K. Elements of Regiocontrol in Palladium-Catalyzed
Oxidative Arene Cross-Coupling. J. Am. Chem. Soc. 2007, 129,
12072−12073. (d) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M.
S. Room Temperature Palladium-Catalyzed 2-Arylation of Indoles. J.
Am. Chem. Soc. 2006, 128, 4972−4973. (e) Lebrasseur, N.; Larrosa, I.
Room Temperature and Phosphine Free Palladium Catalyzed Direct
C-2 Arylation of Indoles. J. Am. Chem. Soc. 2008, 130, 2926−2927.
(3) (a) Hollins, R. A.; Colnago, L. A.; Salim, V. M.; Seidl, M. C.
Thallation-iodination studies of heterocyclic systems. J. Heterocycl.
Chem. 1979, 16, 993−996. (b) Picard, S.; Lecornue, F.; Bashiardes, G.
Synthesis of Unique Analogues of the Ergoline Skeleton Using
Intramolecular [3 + 2] Cycloaddition. Synlett 2014, 25, 1106−1110.
̈
(c) Dufert, M. A.; Billingsley, K. L.; Buchwald, S. L. Suzuki-Miyaura
Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Sub-
strate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013,
135, 12877−12885. (d) Hartung, C. G.; Fecher, A.; Chapell, B.;
Snieckus, V. Directed ortho Metalation Approach to C-7-Substituted
Indoles. Suzuki−Miyaura Cross Coupling and the Synthesis of
Pyrrolophenanthridone Alkaloids. Org. Lett. 2003, 5, 1899−1902.
(e) Alberico, D.; Scott, M. E.; Lautens, M. Aryl-Aryl Bond Formation
by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev. 2007,
́
107, 174. (f) Bruckl, T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Innate
̈
and Guided C-H Functionalization Logic. Acc. Chem. Res. 2012, 45
(6), 826−839.
(4) (a) Yang, J. Transition Metal Catalyzed Meta-C-H Function-
alization of Aromatic Compounds. Org. Biomol. Chem. 2015, 13,
1930−1941. (b) Dey, A.; Agasti, S.; Maiti, D. Palladium Catalysed:
Meta -C-H Functionalization Reactions. Org. Biomol. Chem. 2016, 14,
5440−5453. (c) Frost, C. G.; Paterson, A. J. Directing Remote Meta-
C-H Functionalization with Cleavable Auxiliaries. ACS Cent. Sci.
2015, 1, 418−419. (d) Ackermann, L.; Li, J. C-H Activation:
Following Directions. Nat. Chem. 2015, 7, 686−687. (e) Banjare, S.
K.; Chebolu, R.; Ravikumar, P. C. Cobalt Catalyzed Hydroarylation of
Michael Acceptors with Indolines Directed by a Weakly Coordinating
Functional Group. Org. Lett. 2019, 21, 4049−4053.
(5) (a) Kalepu, J.; Gandeepan, P.; Ackermann, L.; Pilarski, L. T. C4-
H Indole Functionalisation: Precedent and Prospects. Chem. Sci.
2018, 9, 4203−4216. (b) Leitch, J. A.; Bhonoah, Y.; Frost, C. G.
Beyond C2 and C3: Transition-Metal-Catalyzed C-H Functionaliza-
tion of Indole. ACS Catal. 2017, 7, 5618−5627. (c) Lanke, V.;
Bettadapur, K. R.; Prabhu, K. R. Electronic Nature of Ketone
Directing Group as a Key to Control C-2 vs C-4 Alkenylation of
Indoles. Org. Lett. 2016, 18 (21), 5496−5499. (d) Yang, Y.; Qiu, X.;
Zhao, Y.; Mu, Y.; Shi, Z. Palladium-Catalyzed C-H Arylation of
Indoles at the C7 Position. J. Am. Chem. Soc. 2016, 138, 495−498.
(10) The standard reaction conditions showed similar results even
with a higher scale, i.e., 1 mmol scale reaction of 1a, and afforded the
respective C-4 alkenylated product 3aa in 82% yield; the details of this
(11) (a) Sk, M. R.; Bera, S. S.; Maji, M. S. Cp*Co(III)-Catalyzed
C−H Alkenylation of Aromatic Ketones with Alkenes. Adv. Synth.
Catal. 2019, 361, 585−590. (b) Sherikar, M. S.; Kapanaiah, R.; Lanke,
V.; Prabhu, K. R. Rhodium(III)-Catalyzed C-H Activation at the C4-
E
Org. Lett. XXXX, XXX, XXX−XXX