3742
E. Brunet et al. / Tetrahedron Letters 48 (2007) 3739–3743
Table 1. Luminescence data of dyads 1, 2 and reference compounds in aerated solutions
a
ꢀ4
)
Compound (solvent)
kexc (nm)
kems (nm)
Emission intensity
/ (10
Ru(5)(bpy)
2
(a)
455
457
447
442
455
457
447
442
606
617
618
619
606
616
601
612
996
283
220
77
8
3
19
10
12.54
4.51
3.62
2.24
0.09
0.03
0.83
0.21
(b)
Ru(11)(bpy)
2
(a)
(b)
Dyad 1 (a)
(
b)
Dyad 2 (a)
b)
(
a
ꢀ5
2 2 3
c = 10 M; a = CH Cl ; b = CH CN.
unsuccessful using the typical exfoliating methods (1:1
solid state (kexc = 455 nm) what suggests that the strong
interaction between the active moieties observed in solu-
tion prevailed in the solid state. Further studies are
under way to include these dyads into crystalline
inorganic matrices.
water/acetone suspension at 80 ꢁC and alkylamine inter-
3
calation) . In the case of dyad 2, we tried an alternative
1
4
method by means of its treatment with Zr(n-BuO) in
4
n-BuOH. In this way we obtained an amorphous solid
(
it gave no discernible powder X-ray pattern), whose ele-
1
5
mental analyses by combustion and ICP-MS were
compatible with the approximate molecular formula
Zr(2)0.2–0.4(n-BuO)3.6–3.8 what suggests that the dyad
was in fact integrated in the inorganic matrix. Solid-
Acknowledgements
Financial support from the Spanish Ministry of
Science and Education (Grants MAT2003-03243 and
3
1
state MAS ‘non-CP’ P NMR spectra (Fig. 6a) showed
the phosphonate signals slightly shielded (12 ppm) rela-
tive to the starting dyad whose multiplet at ꢀ144.7
MAT2006-00570)
and
indirect
funding
from
ERCROS-Farmacia S.A. (Aranjuez, Spain) are grate-
fully acknowledged.
belonging to the PF counterions is hardly visible in
6
the Zr derivative, indicating that Ru(II) charge compen-
sation is no longer performed by these anions. Solid-
1
3
state CP MAS C NMR spectra (Fig. 6b) revealed
the aliphatic carbons of the butoxide. Thermogravimet-
ric analysis indicated that the solid is stable at tempera-
tures below ca. 300 ꢁC. Above this mark, a heavy 80%
loss was attained in a relatively narrow temperature
range (>200 ꢁC) where all carbon content was lost.
References and notes
1
2
. Desiraju, G. R. In Stimulating Concepts in Chemistry;
Wiley-VCH, 2000; pp 293–306; Dey, A.; Kirchner, M. T.;
Vangala, V. R.; Desiraju, G. R.; Mondal, R.; Howard, J.
A. K. J. Am. Chem. Soc. 2005, 127, 10545.
. Kumar, C. V.; Raju, B. B. Mol. Supramol. Photochem.
2
001, 8, 505; Mitzi, D. B. Chem. Mater. 2001, 13, 3283;
Pergher, S. B. C.; Corma, A.; Fornes, V. Quim. Nova 1999,
2, 693; Byrd, H.; Suponeva, E. P.; Andrew, B.; Bocarsly,
Last but not least, we observed that the organic–inor-
ganic assembly resulted negligible luminescent in the
2
A. B.; Thompson, M. E. Nature 1996, 380, 610.
3
. Brunet, E.; Huelva, M.; V a´ zquez, R.; Juanes, O.; Rodr ´ı -
guez-Ubis, J. C. Chem. Eur. J. 1996, 12, 1578; Brunet, E.;
de la Mata, M. J.; Juanes, O.; Rodriguez-Ubis, J. C.
Chem. Mater. 2004, 16, 1517; Brunet, E.; de la Mata, M.
J.; Juanes, O.; Rodriguez-Ubis, J. C. Angew. Chem., Int.
Ed. 2004, 43, 619–621; Brunet, E. Chirality 2002, 14, 135;
Brunet, E.; Alhendawi, H. M. H.; Cerro, C.; de la Mata,
M. J.; Juanes, O.; Rodr ´ı guez-Ubis, J. C. Angew.
Chem., Int. Ed. 2006, 45, 6918; Brunet, E.; Alonso, M.;
de la Mata, M. J.; Fernandez, S.; Juanes, O.; Chavanes,
O.; Rodriguez-Ubis, J. C. Chem. Mater. 2003, 15,
1
232.
4
. For recent examples of several dyad systems see: Modin,
J.; Johanson, H.; Grennberg, H. Org. Lett. 2005, 7, 3977;
Cardinali, F.; Gallan, J.-L.; Schergna, S.; Maggini, M.;
Nierengarten, J.-F. Tetrahedron Lett. 2005, 46, 2969;
Chaignon, F.; Torroba, J.; Blart, E.; Borgstr o¨ n, M.;
Hammarstr o¨ n, G.; Odobel, F. New J. Chem. 2005, 29,
1
272; Clifford, J. N.; Accorsi, G.; Cardinali, F.; Nieren-
garten, J.-F.; Armaroli, N. C.R. Chimie 2006, 9, 1005;
Zhou, Z.; Sarova, G. H.; Zhang, S.; Ou, Z.; Tat, F. T.;
Kadish, K. M.; Echegoyen, L.; Guldi, D. M.; Schuster, D.
I.; Wilson, S. R. Chem. Eur. J. 2006, 12, 4241.
3
1
1
Figure 6. Solid-state NMR spectra ((a) MAS, ‘non-CP’ P; (b) CP-
5. Spectroscopic data of 5 (mp 46 ꢁC): H NMR (CDCl3,
1
3
MAS C) of dyad 2 and the compound resulting from its reaction with
Zr(On-Bu)
300 MHz) d: 1.18 (t, 12H, J = 6.9 Hz, 4 · CH
); 2.89 (d,
3
4
.
4H, JH–P = 21.5 Hz, 2 · CH P); 3.63 (t, 4H, J = 4.8 Hz,
2