Macrocycles with Switchable Metal Binding Sites
A R T I C L E S
feasibility of incorporating bipyridine functional groups in the
macrocyclic framework through connections that tolerate bond
rotation. The two macrocyclic hosts each contain two 2,2′-
bipyridine units that can freely rotate. These bipyridines are
bridged by either free ureas (host 1) or triazinanone-protected
ureas (host 2). Simple bond rotation should enable the metal
binding sites to flip from the interior of the macrocycle to its
exterior and give rise to different conformational isomers. To
test if this “switchable” design would affect the host’s ability
to bind metals, we examined a series of host metal complexes
in both the solid state and in solution. We compared their
structure and binding affinity with what has been observed for
other bipyridines. Metal cations that match the interior of the
hosts by having suitable ionic radii and coordination preferences
for the geometrically constrained set of bipyridines were
expected to show a preference for binding inside the cavity
(endo). In contrast, metals with other coordination preferences
or with larger ionic radii were expected to prefer to bind to the
host when the bipyridines are rotated outward in an exo
orientation. Therefore, the metal binding event should shift the
host to the conformation most suitable for complexation.
Further assembly of these discrete metal-ligand complexes
either by metal coordination of the macrocycles that adopt exo
conformations or by hydrogen bonding of the ureas should yield
coordination polymers or metal organic frameworks (MOFs).
MOFs are a new class of porous materials that are able to absorb
molecules ranging in size from H2 to large buckyballs.30-34
Currently, a number of groups are exploring methods to
incorporate functionality into MOFs to modulate their physical
and chemical properties.35-40 Strategies include preinstallation
of the functional groups prior to or during the synthesis of the
MOFs or by “postsynthetic modification”.35-40 Indeed, recently
urea functionalized MOFs have been synthesized through
postsynthetic modification of Yaghi’s isoreticular metal-organic
framework-2 (IRMOF-3).39,40 Sometimes the MOF fails to
crystallize into the desired structure because of the presence of
the new functional groups. In these cases, it is difficult to discern
if the functional group has interrupted the metal-ligand
interactions that are central to MOF formation or if other factors
are to blame. The macrocycles reported in this manuscript have
the potential to evaluate the metal-ligand assembly in the
presence of the urea functional groups. They enable the study
of the initial coordination events in solution and allow us to
examine their further assembly by spectroscopic methods. Thus,
these systems could provide unique insight into the process of
MOF synthesis.
Linear ligands that contain two or more 2,2′-bipyridine
units41,42 have been used to connect metal centers in a well-
defined spatial arrangement for applications in sensing,43,44
helical assembly,45 chiral molecular recognition,46,47 photonics
and optoelectronics, and electrochemistry applications.48-50 The
2,2′-bipyridine group has also be incorporated into macrocycles,
which may constrain the metal binding site to a well-defined
size and shape. This special feature of macrocycles has the
potential to enhance the ligand’s selectivity toward particular
metal ions of complementary size. For example, two 2,2′-
bipyridines can be connected at positions 4 and 4′ to yield
macrocycles that direct the coordination sites to the exterior of
the macrocyclic cavity. These exo-ligands are used as building
blocks for the construction of one-dimensional coordination
polymers51 or binuclear complexes with interesting electro-
chemical properties.52 Alternatively, connection of the 2,2′-
bipyridines at positions 6 and 6′ affords macrocycles with
interior coordination sites. These endo-ligands have the two
bipyridines preorganized for binding and are capable of com-
plexation of specific metal cations with complementary size.53,54
Few macrocycles have been reported that connect the 2,2′-
bipyridines through their 5,5′ positions as this connection allows
for both exo and endo coordination modes.55-61 A phenylacet-
ylene macrocycle from Schlu¨ter’s group with two opposing 2,2′-
bipyridines can coordinate with 2 equiv of [Ru(bipy)2Cl2] to
form the doubly exo-cyclical complex (Figure 1c).59 As a result
of the large cavity size (∼13.7 Å × 7.3 Å)60 and relatively rigid
(41) Albrecht, M. Chem. ReV. 2001, 101, 3457–3497.
(42) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. ReV. 2000, 100, 3553–
3590.
(43) Torrado, A.; Imperiali, B. J. Org. Chem. 1996, 61, 8940–8948.
(44) Josceanu, A. M.; Moore, P.; Rawle, S. C.; Sheldon, P.; Smith, S. M.
Inorg. Chim. Acta 1995, 240, 159–168.
(45) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997, 97,
2005–2062.
(46) Knof, U.; von Zelewsky, A. Angew. Chem., Int. Ed. 1999, 38, 302–
322.
(47) Belser, P.; Bernhard, S.; Jandrasics, E.; von Zelewsky, A.; DeCola,
L.; Balzani, V. Coord. Chem. ReV. 1997, 159, 1–8.
(48) Belser, P.; Bernhard, S.; Blum, C.; Beyeler, A.; De Cola, L.; Balzani,
V. Coord. Chem. ReV. 1999, 190-192, 155–169.
(49) Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem.
ReV. 1996, 96, 759–833.
(27) Yang, J.; Dewal, M. B.; Profeta, S.; Smith, M. D.; Li, Y.; Shimizu,
L. S. J. Am. Chem. Soc. 2008, 130, 612–621.
(28) Dewal, M. B.; Xu, Y.; Yang, J.; Mohammed, F.; Smith, M. D.;
Shimizu, L. S. Chem. Commun. 2008, 3909–3911.
(29) Shimizu, L. S.; Hughes, A. D.; Smith, M. D.; Davis, M. J.; Zhang,
B. P.; zur Loye, H.-C.; Shimizu, K. D. J. Am. Chem. Soc. 2003, 125,
14972–14973.
(50) Baxter, S. M.; Jones, W. E.; Danielson, E.; Worl, L.; Strouse, G.;
Younathan, J.; Meyer, T. J. Coord. Chem. ReV. 1991, 111, 47–71.
(51) Kaes, C.; Hosseini, M. W.; Rickard, C. E. F.; Skelton, B. W.; White,
A. H. Angew. Chem., Int. Ed. 1998, 37, 920–922.
(52) Kaes, C.; Hosseini, M. W.; DeCian, A.; Fischer, J. Tetrahedron Lett.
1997, 38, 3901–3904.
(30) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keefe,
M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319–330.
(31) Ockwig, M. W.; Delgado-Friedrich, O.; O’Keefe, M.; Yaghi, O. M.
Acc. Chem. Res. 2005, 38, 176–182.
(53) Ibrahim, R.; Tsuchiya, S.; Ogawa, S. J. Am. Chem. Soc. 2000, 122,
12174–12185.
(32) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem.
Res. 2005, 38, 217–225.
(54) Tsuchiya, S.; Nakatani, Y.; Ibrahim, R.; Ogawa, S. J. Am. Chem. Soc.
2002, 124, 4936–4937.
(33) Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735–3744.
(34) Tranchemontagne, D. J.; Medoza-Cortes, J. L.; O’Keefe, M.; Yaghi,
O. M. Chem. Soc. ReV. 2009, 38, 1257–1283.
(55) De Mendoza, J.; Mesa, E.; Rodriguez-Ubis, J. C.; Va´zquez, P.; Vo¨gtle,
F.; Windscheif, P. M.; Rissanen, K.; Lehn, J. M.; Lilienbaum, D.;
Ziessel, R. Angew. Chem., Int. Ed. 1991, 30, 1331–1333.
(56) Nitschke, J.; Tilley, T. D. J. Org. Chem. 1998, 63, 3673–3676.
(57) Nitschke, J.; Zu¨rcher, S.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122,
10345–10352.
(35) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kin, K.
Nature 2000, 404, 982–986.
(36) Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604–9605.
(37) Costa, J. S.; Gamez, P.; Black, C. A.; Roubeau, O.; Teat, S. J.; Reedik,
J. Eur. J. Inorg. Chem. 2008, 1551–1554.
(58) Nitschke, J.; Tilley, T. D. Angew. Chem., Int. Ed. 2001, 40, 2142–
2145.
(38) Wang, Z. Q.; Cohen, S. M. Angew. Chem., Int. Ed. 2008, 47, 4699–
4702.
(59) Henze, O.; Lentz, D.; Schafer, A.; Franke, P.; Schluter, A. D.
Chem.sEur. J. 2002, 8, 357–365.
(39) Wang, Z. Q.; Cohen, S. M. J. Am. Chem. Soc. 2007, 129, 12368–
12369.
(60) The cavity size was calculated from the crystal structure provided by
ref 59.
(40) Dugan, E.; Wang, Z.; Okamura, M.; Medina, A.; Cohen, S. M. Chem.
Commun. 2008, 3366–3368.
(61) Baxter, P. N. W. J. Org. Chem. 2001, 66, 4170–4179.
9
J. AM. CHEM. SOC. VOL. 131, NO. 48, 2009 17621