1648
A. M. Go´mez et al. / Tetrahedron Letters 48 (2007) 1645–1649
´
´
´
14. Gomez, A. M.; Danelon, G. O.; Valverde, S.; Lopez, J. C.
PPQ-2003-00396). M.D.C. thanks the Comunidad de
Madrid for a scholarship and C.U. thanks the Consejo
Carbohydr. Res. 1999, 320, 138–142.
15. These cyclization reactions led to complex reaction
mixtures that included the corresponding deoxygenated
compounds and minor amounts of stereoisomeric
cyclized products. For instance, from the reaction of
the allyl analogue of methyl xanthate 17 we could isolate
a compound resulting from deoxygenation (23%) as well
as two isomeric C-allyl carbasugars (6% and 10%
yield).
´
Superior de Investigaciones Cientıficas for financial
support.
References and notes
1. (a) For leading references, see: Curran, D. P.; Porter, N.
A.; Giese, B. Stereochemistry of Radical Reactions-Con-
cepts. Guidelines and Synthetic Applications; Weinheim,
Germany, 1996; (b) Fossey, J.; Lefort, D.; Sorba, J. Free
Radicals in Organic Chemistry; John Wiley and Sons:
Chichester, England, 1995; (c) Beckwith, A. L. J. Chem.
Soc. Rev. 1993, 22, 143–151; (d) RajanBabu, T. V. Acc.
Chem. Res. 1991, 24, 139–145; (e) Giese, B. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 753–764; (f) Julia, M. Acc. Chem.
Res. 1971, 4, 386–392; (g) Giese, B. Radicals. In Organic
Synthesis: Formation of Carbon Carbon Bonds; Baldwin,
J. E., Ed.; Pergamon: New York, 1986.
16. For reviews on exo-glycals, see: (a) Taillefumier, C.;
Chapleur, Y. Chem. Rev. 2004, 104, 263–292; (b) Taylor,
R. J. K. Chem. Commun. 1999, 217–227.
´
´
17. (a) Gomez, A. M.; Pedregosa, A.; Valverde, S.; Lopez, J.
´
C. Chem. Commun. 2002, 2022–2023; (b) Gomez, A. M.;
´
´
Danelon, G. O.; Pedregosa, A.; Valverde, S.; Lopez, J. C.
´
Chem. Commun. 2002, 2024–2025; (c) Gomez, A. M.;
´
Pedregosa, A.; Valverde, S.; Lopez, J. C. Tetrahedron Lett.
´
2003, 44, 6111–6116; (d) Gomez, A. M.; Pedregosa, A.;
´
Barrio, A.; Valverde, S.; Lopez, J. C. Tetrahedron Lett.
´
2004, 45, 6307–6310; (e) Gomez, A. M.; Barrio, A.;
´
2. Beckwith, A. L. J. Tetrahedron 1981, 37, 3073–3100, and
references cited therein.
Amurrio, I.; Jarosz, S.; Valverde, S.; Lopez, J. C.
Tetrahedron Lett. 2006, 47, 6243–6246.
3. For selected references, see: (a) Ishibashi, H. Chem. Rec.
2006, 6, 23–31; (b) Della, E. W.; Graney, S. D. J. J. Org.
Chem. 2004, 69, 3824–3835; (c) Cassayre, J.; Gagosz, F.;
Zard, S. Z. Angew. Chem., Int. Ed. 2002, 41, 1783–1785;
(d) Della, E. W.; Kostakis, Ch.; Smith, P. A. Org. Lett.
1999, 1, 363–365; (e) Ward, D. E.; Gai, Y.; Kaller, B. F. J.
Org. Chem. 1995, 60, 7830–7836; (f) Keusenkothen, P. F.;
Smith, M. B. Tetrahedron 1992, 48, 2977–2992; (g) Marco-
Contelles, J.; Bernabe, M.; Ayala, D.; Sanchez, B. J. Org.
Chem. 1994, 59, 1234–1235; (h) Ward, D. E.; Kaller, B. F.
Tetrahedron Lett. 1991, 32, 843–846; (i) Knapp, S.;
Gibson, F. S.; Choe, Y. H. Tetrahedron Lett. 1990, 31,
5397–5400; (j) Padwa, A.; Nimmesgern, H.; Wong, G. S.
K. J. Org. Chem. 1985, 50, 5620–5627.
4. (a) Beckwith, A. L. J.; Blair, I. A.; Philipou, G. Tetra-
hedron Lett. 1974, 15, 2251–2254; (b) Beckwith, A. L. J.;
Lawrence, T. J. Chem. Soc., Perkin Trans. 2 1979, 1535–
1539.
5. Beckwith, A. L. J.; O’Shea, D. M. Tetrahedron Lett. 1986,
27, 4525–4528.
18. General procedure for the radical cyclization: A thoroughly
degassed solution of the substrate (1 mmol) in toluene
(0.02 M) was heated at 80 ꢁC under argon. A solution of
Bu3SnH (1.5 equiv) and AIBN (0.3 equiv) was then added
in toluene (3 mL) via a syringe driven pump over 6 h.
Heating was then continued for 12 h. After cooling, the
reaction mixture was concentrated in vacuo and the
residue was purified by flash chromatography (hexane–
EtOAc 97.5:2.5).
19. General procedure for destannylation: The crude reaction
mixture from the above radical cyclization was dissolved
in a mixture of AcOH–THF–H2O (2:4:1) (50 mL) and
heated to reflux overnight. The solvent was then evapo-
rated and the methylene cyclohexanes were purified by
flash chromatography (hexane–ethyl acetate).
20. Data for selected compounds: Enyne 13: [a]D ꢀ40.0 (c 0.92,
CHCl3); 1H NMR (300 MHz, CDCl3): d (ppm) 1.35 (s,
3H), 1.42 (s, 3H), 1.46 (s, 3H), 1.56 (s, 3H), 2.54 (d,
J = 2.2 Hz, 1H), 4.27 (dd, J = 1.4, 14.2 Hz, 2H), 4.37 (t,
J = 6.0 Hz, 1H), 4.70 (m, 1H), 4.84 (dd, J = 6.0, 2.1 Hz,
1H), 4.97 (br s, 2H); 13C NMR (50 MHz, CDCl3): d (ppm)
23.0, 26.0, 27.0, 27.3, 53.4, 64.2, 67.4, 71.6, 78.0, 79.4,
100.1, 108.6, 110.8, 142.8, 177.0. Enyne 14: [a]D ꢀ59.6 (c
6. Stork, G.; Mook, R., Jr. Tetrahedron Lett. 1986, 27, 4529–
4532.
7. Albrecht, U.; Wartchow, R.; Hoffmann, H. M. R. Angew.
Chem., Int. Ed. Engl. 1992, 31, 910–913.
1
0.3, CHCl3); H NMR (300 MHz, CDCl3): d (ppm) 2.40
´
´
´
(d, J = 3.0 Hz, 1H), 3.77 (t, J = 5.3 Hz, 1H), 3.85 (d,
J = 12.0 Hz, 1H), 3.94 (d, J = 12.0 Hz, 1H), 4.19 (dd,
J = 11.6, 4.4 Hz, 1H), 4.29 (dd, J = 5.6, 2.0 Hz, 1H), 4.36–
4.85 (m, 8H), 5.30 (br s, 2H), 7.19–7.36 (m, 20H); 13C
NMR (50 MHz, CDCl3): d (ppm) 69.8, 75.3, 81.0, 81.8,
70.3, 70.6, 71.2, 72.7, 75.1, 116.8, 127.4 (·2), 127.5 (·4),
127.8 (·2), 127.9 (·2), 128.0 (·2), 128.2 (·4), 128.3 (·4),
137.8, 138.2, 138.3, 138.5, 142.5; API-ES positive: 555.5
(M+Na)+. Enyne 15: [a]D +46.9 (c 1.02, CHCl3); 1H NMR
(300 MHz, CDCl3): d (ppm) 2.09 (s, 3H), 2.12 (s, 3H), 2.13
(s, 6H), 2.56 (d, J = 2.0 Hz, 1H), 4.57 (d, J = 13.2 Hz,
1H), 4.71 (d, J = 13.2 Hz, 1H), 5.31 (d, J = 14.0 Hz, 1H),
5.48 (dd, J = 3.6, 7.0 Hz, 1H), 5.57 (dd, J = 2.0, 7.0 Hz,
1H), 5.67 (d, J = 3.6 Hz, 1H); 13C NMR (50 MHz,
CDCl3): d (ppm) 20.6, 20.8, 20.9, 21.0, 29.0, 62.9, 64.4,
72.0, 72.1, 76.3, 80.9, 81.6, 111.7, 118.3, 139.1, 169.5 (·2),
170.6 (·2); API-ES positive: 363.3 (M+Na)+, 358
(M+NH4)+. Methylene cyclohexanes 19: (4:1 mixture of
unassigned Z, E stannanes); 1H NMR (300 MHz, CDCl3):
d (ppm) 0.87 (t, J = 7.2, 9H), 0.89 (m, 6H), 1.24 (m, 6H),
1.27 (s, 3H), 1.29 (s, 3H), 1.30 (m, 6H), 1.31 (s, 3H), 1.33
(s, 3H), 1.91 (dd, J = 2.9, 10.4 Hz, 1H), 2.12 (m, 2H), 3.62
8. Gomez, A. M.; Danelon, G. O.; Valverde, S.; Lopez, J. C.
J. Org. Chem. 1998, 63, 9626–9627.
9. For reviews on carbasugars, see: (a) Sollogoub, M.; Sinay,
¨
P. In The Organic Chemistry of Sugars; Levy, D. E.,
Fugedi, P., Eds.; CRC Press: Boca Raton, 2006, Chapter
¨
8; (b) Kobayashi, Y. In Glycoscience. Chemistry and
Chemical Biology; Fraser-Reid, B., Tatsuta, K., Thiem, J.,
Eds.; Springer: Berlin, 2001; Vol. 3, Chapter 10.3; (c)
Ogawa, S. In Carbohydrate Mimics: Concepts and Meth-
ods; Chapleur, Y., Ed.; Wiley-VCH: Weinheim, 1998; pp
87–106; (d) Suami, T.; Ogawa, S. Adv. Carbohydr. Chem.
Biochem. 1990, 48, 21–90; (e) Ogawa, S. In Carbohydrates
in Drug Design; Witczak, Z. J., Nieforth, K. A., Eds.;
Marcel Dekker: New York, 1997; pp 433–469; (f) Suami,
T. Top. Curr. Chem. 1990, 154, 257–283.
´
10. Gomez, A. M.; Company, M. D.; Uriel, C.; Valverde, S.;
´
Lopez, J. C. Tetrahedron Lett. 2002, 43, 4997–5000.
11. Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem.
Soc. 1983, 105, 4059–4065.
12. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin
Trans. 1 1975, 1574–1585.
13. Gelas, J.; Horton, D. Carbohydr. Res. 1978, 67, 371–387.