140
K. Kinashi et al. / Journal of Photochemistry and Photobiology A: Chemistry 213 (2010) 136–140
Fig. 7. (a) Schematic representation of the reaction coordinates (RCs) related to the potential energies of the PMC-form and the state of interaction with the PMC-form
according to PHPS reaction in the system. The color bar indicates the color tone of the actual film. (b) Molecular structure of the PMC- and H· · ·PMC-forms in a film, and
optical photomicrographs of the respective RC-1 and RC-4 states.
eration of the H· · ·PMC-form corresponds to what is referred to as
reverse photochromism in RC-4. The increasing absorption inten-
sity (RC-3 → RC-4) is produced directly from the SP-form by reverse
photochromism, because the energy gap between H· · ·PMC0 and
H· · ·PMC1 is wider and stabilized beyond SP0.
[10] D. Pisignano, E. Mele, L. Persano, A. Athanassiou, C. Fotakis, R. Cingolani, J. Phys.
Chem. B 110 (2006) 4506.
[11] M. Levitus, M. Talhavini, R.M. Negri, T.D.Z. Atvars, P.F. Aramendia, J. Phys. Chem.
B 101 (1997) 7680.
[12] T.W. Shin, Y.S. Cho, Y.D. Huh, K.D. Lee, W. Yang, J. Park, I.J. Lee, J. Photochem.
Photobiol. A: Chem. 137 (2000) 163.
[13] E.B. Gaeva, V. Pimienta, S. Delbaere, A.V. Metelitsa, N.A. Voloshin, V.I. Minkin,
G. Vermeersch, J.C. Micheau, J. Photochem. Photobiol. A: Chem. 191 (2007)
114.
4. Conclusions
[14] L. Persano, E. Mele, A. Athanassiou, R. Cingolani, D. Pisignano, Chem. Mater. 18
(2006) 4171.
After the PMC-form was left in PHPS for approximately 48 h,
the ꢀmax of the PMC-form underwent a significant shift from 574
to 518 nm. The IR peaks of Si–H and N–H decreased while the
Si–O–Si bands increased, in which indicated the almost complete
conversion of PHPS to silica, but with partially uncondensed Si–OH
and O–H remaining in the silica. Therefore, it was suggested that
after 48 h, the converted silica had a solvent polarity similar to a
methanol/water mixture. We have characterized the structure of
the PMC-form in silica at 48–312 h and determined a new chemi-
cal bond assigned to hydrogen bonding between the oxide anion on
C–O and Si–OH in silica. After 48–312 h, the H· · ·PMC-form was also
directly generated from the SP-form by protonation with silica. The
thermal stability behavior of the PMC-form is suggested as being
due to reverse photochromism. From a technological viewpoint, the
slow visualization of color change cause by reverse photochromism
can be utilized, for example, in time-variable color sensors and
hygrometers.
[15] K. Horie, K. Hirao, I. Mita, Y. Takubo, T. Okamoto, M. Washio, S. Tagawa, Y.
Tabata, Chem. Phys. Lett. 119 (1985) 499.
[16] A.K. Chibisov, V.S. Marevtsev, H. Görner, J. Photochem. Photobiol. A: Chem. 159
(2003) 233.
[17] C.J. Wohl, D. Kuciauskas, J. Phys. Chem. B 109 (2005) 22186.
[18] J. Hobley, U. Pfeifer-Fukumura, M. Bletz, T. Asahi, H. Masuhara, H. Fukumura, J.
Phys. Chem. A 106 (2002) 2265.
[19] H. Görner, Chem. Phys. Lett. 222 (1997) 315.
[20] H. Görner, Phys. Chem. Chem. Phys. 3 (2001) 416.
[21] J. Ren, H. Tian, Sensors 7 (2007) 3166.
[22] D.A. Topchiyev, Polym. Sci. U.S.S.R. 32 (12) (1990) 2361.
[23] D. Levy, Chem. Mater. 9 (1997) 2666.
[24] A. Shumburo, M.C. Biewer, Chem. Mater. 14 (2002) 3745.
[25] H. Zhang, T. Yi, F. Li, E. Delahaye, P. Yu, R. Clement, J. Photochem. Photobiol. A:
Chem. 186 (2007) 173.
[26] H. Nishikiori, R. Sasai, K. Takagi, T. Fujii, Langmuir 22 (2006) 3376.
[27] I. Casades, M. Alvaro, H. Garcia, M.N. Pillai, Photochem. Photobiol. Sci. 1 (2002)
219.
[28] E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, Mater. Sci. Eng.
26 (2000) 97.
[29] Y. Mori, R. Saito, Polymer 45 (2004) 95.
[30] O. Funayama, Y. Tashiro, A. Kamo, M. Okumura, T. Isoda, J. Mater. Sci. 29 (1994)
4883.
[31] H. Ahrens, DE Patent 10320180 (2003).
Acknowledgement
[32] A. Yamano, H. Kozuka, J. Phys. Chem. B 113 (2009) 5769.
[33] K. Kinashi, Y. Harada, Y. Ueda, Thin Solid Films 516 (2008) 2532.
[34] M. Miura, T. Hayashi, F. Akutu, K. Nagakubo, Polymer 19 (1978) 348.
[35] B. Nadolski, P. Uznanski, M. Kryszewski, Makromol. Chem. Rapid Commun. 5
(1984) 327.
This research was financially supported by a Sasakawa Scientific
Research Grant from the Japan Science Society.
[36] I. Shimizu, H. Kokado, E. Inoue, Bull. Chem. Soc. Jpn. 42 (1969) 1726.
[37] I. Shimizu, H. Kokado, E. Inoue, Bull. Chem. Soc. Jpn. 42 (1969) 1730.
[38] F. Raymo, M.S. Giordani, J. Am. Chem. Soc. 123 (2001) 4651.
[39] C. Reichardt, Chem. Rev. 94 (1994) 2319.
[40] A.R. Denes, M.A. Tshabalala, R. Rowell, F. Denes, R.A. Young, Holzforschung 53
(1999) 318.
[41] S.R. Leadley, J.F. Watts, J. Electron Spectrosc. Relat. Phenom. 85 (1997)
107.
[42] P.D. Scholes, A.G.A. Coombes, L. Illum, S.S. Davis, J.F. Watts, C. Ustariz, M. Vert,
M.C. Davis, J. Controlled Release 59 (1999) 261.
References
[1] G.H. Brown, Techniques of Chemistry Photochromism, vol. III, Wiley-
Interscience, New York, 1971.
[2] H. Durr, H. Bouas-Laurent, Photochromism Molecules and Systems, Elsevier,
Amsterdam, 1990.
[3] M. Irie, Chem. Rev. 100 (2000) 1685.
[4] A.J. Myles, T.J. Wigglesworth, N.R. Branda, Adv. Mater. 15 (2003) 745.
[5] K. Kinashi, K. Furuta, Y. Harada, Y. Ueda, Chem. Lett. 35 (2006) 298.
[6] F.M. Raymo, Adv. Mater. 14 (2002) 401.
[7] S. Giordani, M.A. Cejas, F.M. Raymo, Tetrahedron 60 (2004) 10973.
[8] Y. Zhou, D. Zhang, Y. Zhang, Y. Tang, D. Zhu, J. Org. Chem. 70 (2005) 6164.
[9] M.Q. Zhu, L. Zhu, J.J. Han, W. Wu, L.K. Hurst, A.D.Q. Li, J. Am. Chem. Soc. 128
(2006) 4303.
[43] B. Sreedhar, D.K. Chattopadhyay, M. Sri Hari Karunakar, A.R.K. Sastry, J. Appl.
Polym. Sci. 101 (2006) 25.
[44] M. Bletz, U. Pfeifer-Fukumura, U. Kolb, W. Baumann, J. Phys. Chem. A 106 (2002)
2232.
[45] A.K. Chibisov, H. Görner, J. Phys. Chem. A 101 (24) (1997) 4305.