10.1002/anie.202005629
Angewandte Chemie International Edition
COMMUNICATION
our previous discussion around the aerobic reoxidation of the
photoreduced state. NP-1 is also shown to be stable to repeated
potential cycling (Figure S20), highlighting the strong attachment
of the POM to the Au surface. In contrast, the behaviour of NP-
P2W18 is identical to that of the {P2W18} capping groups (Figure
S19), indicating that the kinetics of electron transfer to and from
the weakly bound POMs appear unaffected by their electrostatic
association to the AuNP surface. The electrochemical properties
of 1 and NP-1 were also compared via voltammetry using a Pt
ultramicroelectrode (see SI for details). 1 yielded a clear steady-
state voltammogram due to efficient, convergent diffusion of the
redox species to the electrode surface from the expanding
diffusion field. In contrast, NP-1 yielded a transient (peak-shaped)
response due to depletion of the slowly-diffusing nanocomposite
within the diffusion field next to the electrode surface, consistent
with the retention of stable POM-NP interactions in NP-1.
Keywords: redox chemistry • gold nanoparticle • hybrid material
• photochemistry • polyoxometalate
[1]
a) K. Saha, S. S. Agasti, C Kim, X. Li and V. M. Rotello, Chem. Rev.
2012, 112, 2739–2779; b) H. Kang, J. T. Buchman, R. S. Rodriguez, H.
L. Ring, J. He , K. C. Bantz and C. L. Haynes, Chem. Rev. 2019, 119,
664–699; c) R. Ahmad, N. Griffete, A. Lamouri, N. Felidj, M. M. Chehimi
and C. Mangeney, Chem. Mater. 2015, 27, 5464−5478; d) M. C. Daniel
and D. Astruc, Chem. Rev. 2004, 104, 293−346; e) Y. Zhang, X. Cui, F.
Shi and Y. Den. Chem. Rev. 2012, 112, 2467–2505.
[2]
[3]
M.-C. Daniel, J. Ruiz, S. Nlate, J.-C. Blais and D. Astruc, J. Am. Chem.
Soc. 2003, 125, 2617–2628.
a) X. Lopez, J. J. Carbo, C. Bo and J. M. Poblet, Chem. Soc. Rev. 2012,
41, 7537-7571; b) J. J. Walsh, A. M. Bond, R. J. Forster and T. E. Keyes,
Coord. Chem. Rev. 2016, 306, 217–234.
[4]
[5]
A. Troupis, A. Hiskia and E. Papaconstantinou, Angew. Chem. Int. Ed.
2002, 41, 1911–1914.
a) Y. Lin and R. G. Finke, J. Am. Chem. Soc. 1994, 116, 8335–8353 b)
C. R. Graham, L. S. Ott and R. G. Finke, Langmuir 2009, 25, 1327–
1336; c) S. Martín, Y. Takashima, C.-G. Lin, Y.-F. Song, H. N. Miras and
L. Cronin, Inorg. Chem. 2019, 58, 4110–4116.
We have successfully prepared highly stable AuNPs
functionalised with covalently-bound organic-inorganic hybrid
POMs. Extensive characterization of the new nanomaterial (NP-
1) was performed using a range of spectroscopic and imaging
techniques, demonstrating unambiguously that hybrid POMs are
directly attached to the Au NP surface through a thiolate-type
binding mode. The thermal, chemical, photochemical and
electrochemical stability of the new covalent nanocomposite was
investigated through detailed comparison with an electrostatically
functionalised analogue (NP-P2W18), clearly demonstrating the
crucial and highly effective role that covalent functionalisation
plays in stabilising the assembly. This multifunctional
nanomaterial was found to combine the optical properties of gold
nanoparticles with the electro- and photochemical features of
POMs. The rich, reversible electrochemistry and remarkable,
efficient and reversible photoactivation under visible light means
that these materials may find new application in a range of
catalytic and sensing technologies. Future work will explore how
more systematic approaches to the molecular design of the hybrid
POM, in conjunction with the nanoparticle size, shape and
composition, can be used to both tailor and improve the properties
of new composite materials.
[6]
a) Y. Wang and I. A. Weinstock, Chem. Soc. Rev. 2012, 41, 7479–7496;
b) U. Jameel, M. Zhu, X. Chen and Z. Tong, J. Mater. Sci. 2016, 51,
2181–2198; (c) Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi
and I. A. Weinstock, J. Am. Chem. Soc. 2009, 131, 17412–17422; d) M.
Zhang, J. Hao, A. Neyman, Y. Wang and I. A. Weinstock, Inorg. Chem.
2017, 56, 2400−2408; e) Y. Wang, O. Zeiri, M. Raula, B. L. Ouay, F.
Stellacci and I. A. Weinstock, Nat. Nanotechnol. 2017, 12, 170-177; f) Y.
Wang, M. Raula, Y. Wang, O. Zeiri, S. Chakraborty, G. Gan-Or, E. Gadot
and I. A. Weinstock, Angew. Chem. Int. Ed. 2017, 56, 7083 –7087; g) A.
Z. Ernst, L. Sun, K. Wiaderek, A. Kolary, S. Zoladek, P. J. Kulesza and
J. A. Cox, Electroanalysis 2007, 19, 2103–2109; h) S. Li, X. Yu, G.
Zhang, Y. Ma, J. Yao, B. Keita, N. Louis and H. Zhao, J. Mater. Chem.
2011, 21, 2282–2287; i) R. Liu, S. Li, X. Yu, G. Zhang, S. Zhang, J. Yao,
B. Keita, L. Nadjo and L. Zhi, Small 2012, 8, 1398–1406.
[7]
a) A. Dolbecq, E. Dumas, C. R. Mayer and P. Mialane, Chem. Rev. 2010,
110, 6009-6048; b) A. Proust, B. Matt, R. Villanneau, G. Guillemot, P.
Gouzerh and G. Izzet, Chem. Soc. Rev. 2012, 41, 7605-7622; c) A. V.
Anyushin, A. Kondinski and T. N. Parac-Vogt, Chem. Soc. Rev. 2020,
49, 382-432.
[8]
[9]
a) J. M. Cameron, S. Fujimoto, K. Kastner, R.-J. Wei, D. Robinson, V.
Sans, G. N. Newton and H. Oshio, Chem. Eur. J. 2017, 23, 47-50; b) S.
Fujimoto, J. M. Cameron, R.-J. Wei, K. Kastner, D. Robinson, V. Sans,
G. N. Newton and H. Oshio, Inorg. Chem. 2017, 56, 12169-12177.
a) M. Piot, B. Abécassis, D. Brouri, C. Troufflard, A. Proust and G. Izzet,
Proc. Nat. Acad. Sci. 2018, 115, 8895–8900; b) E. Hampson, J. M.
Cameron, S. Amin, J. Kyo, J. A. Watts, H. Oshio and G. N. Newton,
Angew. Chem. Int. Ed. 2019, 58, 18281–18285.
Acknowledgements
The authors thank the University of Nottingham Propulsion
Futures Beacon of Excellence. KK thanks the Deutscher
Akademischer Austausch Dienst (DAAD). EH thanks the Low
Dimensional Materials and Interfaces Doctoral Training
Programme at the University of Nottingham. JC, VS and GN thank
the Leverhulme Trust (RPG-2016-442). GN and DW thank the
Centre of Advanced Materials for Integrated Energy Systems
(CAM-IES). GN and VS thank the EPSRC Directed Assembly
[10] S. Amin, J. M. Cameron, J. A. Watts, D. A. Walsh, V. Sans and G. N.
Newton, Mol. Syst. Des. Eng. 2019, 4, 995–999.
[11] A. Klaiber, T. Kollek, S. Cardinal, N. Hug, M. Drechsler and S. Polarz,
Adv. Mater. Interfaces 2018, 5, 1701430.
[12] a) C. R. Mayer, S. Neveu and V. Cabuil, Angew. Chem. Int. Ed. 2002,
41, 501-503; b) S. Hegde, S. Joshi, T. Mukherjee and S. Kapoor, Mater.
Sci. Eng. C 2013, 33, 2332–2337.
[13] S. Sutter, B. Trepka, S. Siroky, K. Hagedorn, S. Theiß, P. Baum and S.
Polarz, ACS Appl. Mater. Interfaces 2019, 11, 15936–15944.
[14] K. Kastner, A. J. Kibler, E. Karjalainen, J. A. Fernandes, V. Sans and G.
N. Newton, J. Mater. Chem. A 2017, 5, 11577.
Network.
VS
thanks
the
Generalitat
Valenciana
(CIDEGENT/2018/036) for funding. The authors thank the
Diamond Light Source for provision of beamtime (SP15151).
[15] L. E. Briand, G. T. Baronetti and H. J. Thomas, Appl. Catal. A 2003, 256,
37–50.
[16] J. -W. Park and J. S. Shumaker-Parry, J. Am. Chem. Soc. 2014, 136,
1907–1921.
Conflict of interest.
[17] J. Piella, N. G. Bastus and V. Puntes, Chem. Mater. 2016, 28,
1066−1075.
The authors declare no conflict of interest
[18] Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Daib and M.-H. Whangboc, J.
Mater. Chem. 2011, 21, 9079–9087.
This article is protected by copyright. All rights reserved.