G.A. dos Santos et al. / Biochimica et Biophysica Acta 1798 (2010) 1714–1723
1723
[9] J. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, W. Hagins, Liposome-cell
interaction: transfer and intracellular release of a trapped fluorescent marker,
Science 195 (1977) 489–492.
[10] F.A. Maximiano, M.A. da Silva, K.R.P. Daghastanli, P.S. de Araujo, H. Chaimovich, I.
M. Cuccovia, A convenient method for lecithin purification from fresh eggs, Quim.
Nova 31 (2008) 910–913.
[11] P. Cheng, D. Li, L. Boruvka, Y. Rotenberg, A.W. Neumann, Automation of
axisymmetric drop shape analysis for measurements of interfacial tensions and
contact angles, Colloids Surf. 43 (1990) 151–167.
[12] H.-U.K. Kye-Hong Kang, K.-H. Lim, N.-H. Jeong, Mixed micellization of anionic
ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride,
Bull. Korean Chem. Soc. (BKSC) 22 (2001) 1009–1014.
[13] R.M. Verly, M.A. Rodrigues, K.R.P. Daghastanli, A.M.L. Denadai, I.M. Cuccovia, C.
Bloch, F. Frezard, M.M. Santoro, D. Pilo-Veloso, M.P. Bemquerer, Effect of
cholesterol on the interaction of the amphibian antimicrobial peptide DD K
with liposomes, Peptides 29 (2008) 15–24.
[14] G. Rouser, S. Fleischer, A. Yamamoto, Two dimensional thin layer chromato-
graphic separation of polar lipids and determination of phospholipids by
phosphorus analysis of spots, Lipids 5 (1970) 494–496.
[15] M. Lanotte, V. Martinthouvenin, S. Najman, P. Balerini, F. Valensi, R. Berger, NB4, a
maturation inducible cell-line with T(15-17) marker isolated from a humam
acute promyelocitic leukemia (ME), Blood 77 (1991) 1080–1086.
[16] F.N. Strefford, J.C., T. Chaplin, M.J. Neat, R.T. Oliver, B.D. Young, L.K. Jones, The
characterisation of the lymphoma cell line U937, using comparative genomic
hybridisation and multi-plex FISH, , 2001, pp. 9–14.
[17] S. Naumann, D. Reutzel, M. Speicher, H.J. Decker, Complete karyotype character-
ization of the K562 cell line by combined application of G-banding, multiplex-
fluorescence in situ hybridization, fluorescence in situ hybridization, and
comparative genomic hybridization, Leuk. Res. 25 (2001) 313–322.
[18] D.T. Covas, J.L.C. Siufi, A.R.L. Silva, M.D. Orellana, Isolation and culture of umbilical
vein mesenchymal stem cells, Braz. J. Med. Biol. Res. 36 (2003) 1179–1183.
[19] S.A. Altman, L. Randers, G. Rao, Comparison of trypan blue-dye exclusion and
fluorometric assays for mammalian-cell viability determinations, Biotechnol.
Prog. 9 (1993) 671–674.
ODPC as an APL with minor hemolytic activity, a result that may represent
a significant advantage in future clinical trials.
In the present study, we demonstrated that ODPC induced cell
death primarily by apoptosis and inhibited proliferation in three
human leukemia cell lines in the concentration range of 10 to 50 μM
that is far below the CMC. Interestingly, Agresta et al. [5] determined
the IC-50 of ODPC against MT2 cells (a non-tumoral cell line) to be
greater than 100 μM, and the hemolytic activity for the same
compound was demonstrated only with concentrations above 2 mM.
The physicochemical data obtained in the present study indicate that
the interaction of ODPC with mimetic PC membranes occurs even below
the CMC. DLS, DSC and CF leakage revealed that the insertion of ODPC into
the membrane destabilized it, making it more fluid. The use of liposomes
as a model for cell membranes showed that ODPC may interact with
membranes at low concentrations without causing rupture.
Acknowledgements
The authors thank Prof. Dr. Stefano Servi, Dipartimento di Chimica,
Materiali, Ingegneria Chimica “Giulio Natta,” Politecnico di Milano and
CNR, Istituto di Chimica del Riconoscimento Molecolare “Adolfo Quilico,”
Italy, for providing a sample of the original compound that was used as a
standard for comparison with ODPC synthesized in our laboratory and
Maristela D. Orellana and Alexandre Krause for technical assistance with
HUVEC cells and HEK-293 cells, respectively. The authors also thank the
following Brazilian governmental agencies for financial support: Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coorde-
nação de Aperfeiçoamento do Pessoal de Ensino Superior (CAPES),
Fundação de Amparo a Pesquisa do Estado de São Paulo (2008/06619-4)
and Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das
Clínicas da FMRP-USP (FAEPA). Thanks are also due to Prof. Norberto
Pepoline Lopes for High Resolution Mass Spectroscopy (ESI) analyses.
[20] R.A. Freitas, G.A.S. dos Santos, H.L.G. Teixeira, P.S. Scheucher, A.R. Lucena-Araujo,
A.S.G. Lima, R. Lima, A.B. Garcia, A.A. Jordao, R.P. Faicao, H. Vannucchi, E.M. Rego,
Apoptosis induction by (+)alpha-tocopheryl succinate in the absence or presence
of all-trans retinoic acid and arsenic trioxide in NB4, NB4-R2 and primary APL
cells, Leuk. Res. 33 (2009) 958–963.
[21] B. Bellosillo, M. Dalmau, D. Colomer, J. Gil, Involvement of CED-3/ICE proteases in
the apoptosis of B-chronic lymphocytic leukemia cells, Blood 89 (1997)
3378–3384.
[22] A. Pessina, B. Albella, M. Bayo, J. Bueren, P. Brantom, S. Casati, C. Croera, G.
Gagliardi, P. Foti, R. Parchment, D. Parent-Massin, G. Schoeters, Y. Sibiril, R. Van
Den Heuvel, L. Gribaldo, Application of the CFU-GM assay to predict acute drug-
induced neutropenia: an international blind trial to validate a prediction model
for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics, Toxicol.
Sci. 75 (2003) 355–367.
[23] R.E. Parchment, M. Gordon, C.K. Grieshaber, C. Sessa, D. Volpe, M. Ghielmini,
Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy
from in vitro tests, Ann. Oncol. 9 (1998) 357–364.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the
References
[24] D. Moneta, C. Geroni, O. Valota, P. Grossi, M.J.A.d. Jonge, M. Brughera, E. Colajori,
M. Ghielmini, C. Sessa, Predicting the maximum-tolerated dose of PNEU-159548
(4-dimethoxy-3â ²-deamino-3â ²-aziridinyl-4â ²-methylsulphonyl-daunorubicin)
in humans using CFU-GM clonogenic assays and prospective validation, Eur. J.
Cancer (Oxford, England: 1990) 39 (2003) 675–683.
[25] M. MacFarlane, Cell death pathways—potential therapeutic targets, Xenobiotica
39 (2009) 616–624.
[26] J. Hu, J. Fang, Y. Dong, S.J. Chen, Z. Chen, Arsenic in cancer therapy, Anticancer
Drugs 16 (2005) 119–127.
[1] S.L. Croft, K. Seifert, M. Duchêne, Antiprotozoal activities of phospholipid
analogues, Mol. Biochem. Parasitol. 126 (2003) 165–172.
[2] S. Clive, J. Gardiner, R.C.F. Leonard, Miltefosine as a topical treatment for cutaneous
metastases in breast carcinoma, Cancer Chemother. Pharmacol. 44 (1999) S29–S30.
[3] S.K. Bhattacharya, T.K. Jha, S. Sundar, C.P. Thakur, J. Engel, H. Sindermann, K. Junge,
J. Karbwang, A.D.M. Bryceson, J.D. Berman, Efficacy and tolerability of miltefosine
for childhood visceral leishmaniasis in India, Clin. Infect. Dis. 38 (2004) 217–221.
[4] L.H. Lindner, M. Hossann, M. Vogeser, N. Teichert, K. Wachholz, H. Eibl, W.
Hiddemann, R.D. Issels, Dual role of hexadecylphosphocholine (miltefosine) in
thermosensitive liposomes: active ingredient and mediator of drug release,
J. Control. Release 125 (2008) 112–120.
[27] C. Demetzos, Differential scanning calorimetry (DSC): a tool to study the thermal
behavior of lipid bilayers and liposomal stability, J. Liposome Res. 18 (2008)
159–173.
[5] M. Agresta, P. D'Arrigo, E. Fasoli, D. Losi, G. Pedrocchi-Fantoni, S. Riva, S. Servi, D.
Tessaro, Synthesis and antiproliferative activity of alkylphosphocholines, Chem.
Phys. Lipids 126 (2003) 201–210.
[28] C. Gajate, F. Mollinedo, Edelfosine and perifosine induce selective apoptosis in
multiple myeloma by recruitment of death receptors and downstream signaling
molecules into lipid rafts, Blood 109 (2007) 711–719.
[6] C. Gajate, A. Santos-Beneit, M. Modolell, F. Mollinedo, Involvement of c-Jun NH2-
terminal kinase activation and c-Jun in the induction of apoptosis by the ether
phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, Mol.
Pharmacol. 53 (1998) 602–612.
[29] L.J. Pike, Rafts defined: a report on the keystone symposium on lipid rafts and cell
function, J. Lipid Res. 47 (2006) 1597–1598.
[30] M.F. Hanzal-Bayer, J.F. Hancock, Lipid rafts and membrane traffic, FEBS Lett. 581
(2007) 2098–2104.
[7] V. Zaremberg, C. Gajate, L.M. Cacharro, F. Mollinedo, C.R. McMaster, Cytotoxicity of
an anti-cancer lysophospholipid through selective modification of lipid raft
composition, J. Biol. Chem. 280 (2005) 38047–38058.
[8] C. Gajate, F. Mollinedo, The antitumor ether lipid ET-18-OCH3 induces apoptosis
through translocation and capping of Fas/CD95 into membrane rafts in human
leukemic cells, Blood 98 (2001) 3860–3863.
[31] L.Y. Zhao, S.S. Feng, N. Kocherginsky, I. Kostetski, DSC and EPR investigations on
effects of cholesterol component on molecular interactions between paclitaxel
and phospholipid within lipid bilayer membrane, Int. J. Pharm. 338 (2007)
258–266.
[32] M.K. Jain, R.C. Wagner, Introduction to biological membranes, John Wiley & Sons,
USA, 1980.