J.-T. Fan et al. / Bioorg. Med. Chem. 18 (2010) 8226–8234
8233
ꢀ
13
7
22 cm 1; for 1H and C NMR data, see Table 1; positive FABMS
monosaccharide mixture. The dry powder was dissolved in pyri-
dine (2 mL), -cysteine methyl ester hydrochloride (1.5 mg) was
+
+
m/z 831 (50) [M+H] ; positive HRESIMS m/z 853.3391 [M+Na] ,
cacld for C42 12Na, 853.3384.
Rubiyunnanin F (4): Amorphous powder; ½
MeOH); UV (MeOH) kmax (log ) 203 (4.87), 276 (3.80) nm; IR
max 3423, 2932, 1663, 1512, 1447, 1414, 1248, 1208, 1075,
L
H
50
N
6
O
added, and the mixture was heated at 60 °C for 1 h. Thereafter,
trimethylsilylimidazole (1.5 mL) was added to the reaction mix-
ture in ice water and kept at 60 °C for 30 min. The mixture was di-
rectly subjected to GC analysis under the following conditions:
column temperature 180–280 °C; programmed increase, at 3 °C/
2
D
5
aꢃ
ꢀ182.5 (c 0.37,
e
(
KBr) m
ꢀ1
1
13
8
39, 803 cm ; for H and C NMR data, see Table 2; positive FAB-
+
+
MS m/z 976 (92) [M+H] , 814 (13) [M+2HꢀGlc] ; positive HRESIMS
min; carrier gas, N
250 °C; injection volume, 4
tion of -glucose for compound 4 was determined by comparing
2
(1 mL/min); injector and detector temperature,
+
m/z 976.4334 [M+H] , cacld for C48
Rubiyunnanin G (5): Amorphous powder; ½
MeOH); UV (MeOH) kmax (log ) 203 (4.57), 277 (3.53) nm; IR
KBr) max 3440, 2936, 1658, 1640, 1517, 1449, 1207, 838,
10 cm 1; for 1H and C NMR data, see Table 2; positive FABMS
H
62
N
7
O
15, 976.4303.
lL; and split ratio, 1:50. The configura-
28
aꢃ
ꢀ127.3 (c 0.11,
D
D
e
the retention time with the derivative of authentic sample (
cose: 18.074 min).
D-glu-
(
8
m
ꢀ
13
+
+
m/z 905 (24) [M+H] ; positive HRESIMS m/z 927.3734 [M+Na] ,
cacld for C45 14Na, 927.3752.
Rubiyunnanin H (6): Amorphous powder; ½
MeOH); UV (MeOH) kmax (log ) 203 (4.81), 276 (3.83) nm; IR
KBr) max 3424, 2933, 1657, 1640, 1512, 1248, 1075, 826 cm ;
Acknowledgements
56 6
H N O
2
D
7
aꢃ
ꢀ244.0 (c 0.12,
This work was supported by the National Natural Science Foun-
dation of China (30725048), National Basic Research Program of
China (2009 CB522300), the Fund of Chinese Academy of Sci-
ences (KSCX2-YW-R-177), the Innovative Group Program from
the Science and Technology Department of Yunnan Province
e
ꢀ1
(
m
1
13
for H and C NMR data, see Table 2; positive FABMS m/z 935
95) [M+H] ; positive HRESIMS m/z 957.3882 [M+Na] , cacld for
+
+
(
C
46
H
58
N
6
O
15Na, 957.3857.
(
2008OC011) and the Fund of State Key Laboratory of Phytochem-
istry and Plant Resources in West China, Kunming Institute of Bot-
any, Chinese Academy of Sciences. We thank Mrs. Ogunlana
Olubanke and Dr. Abiodun Humphrey Adebayo for proof reading
the manuscript.
3
.5. Marfey’s analysis of the absolute configuration of amino
acids
Hydrolysis of compounds 1–6 (1 mg each) were achieved in sep-
arate experiments, by the addition of 1 mL of 6 N HCl at 115 °C for
8 h. The hydrolyzate was evaporated to dryness under a stream of
to remove traces of HCl. Then, the resultant hydrolyzate was
redissolved in 900 L of acetone, thereafter, 1 M NaHCO (20 L)
and a 1% solution of N -(2,4-dinitro-5-fluorophenyl)- -alaninamide
-FDAA, Marfey’s reagent, Sigma, 100 L) in acetone were added,
and the mixture was heated at 40 °C for 1 h. The reaction mixture
was cooled to RT and quenched by addition of 2 N HCl (10 L), dried,
anddissolvedin50%aqueousCH CN(600 L). Fivemicrolitersofthe
FDAA derivative was analyzed by HPLC using a C18 column (Agilent,
.6 mm ꢁ 150 mm, 5 m, Zorbax Eclipse-C18) maintained at 30 °C.
Aqueous CH CN containing 4‰ TFA was used as the mobile phase
with linear gradient elution (20–35%, 40 min) at a flow rate of
mL/min. FDAA-derivatived amino acids were detected by absorp-
tion at 340 nm.
To 50 L of a 50 mM aqueous solution of
of Ala (no hydrolysis), Glu (no hydrolysis) and Glu (hydrolysis with
N HCl, 115 °C, 18 h) were added 1 M NaHCO (20 L) and a 1%
solution of -FDAA (100 L) in acetone, respectively. Each mixture
was heated at 40 °C for 1 h. The reaction mixture was cooled to RT
and quenched by the addition of 2 N HCl (10 L). It was dried, dis-
solved in 50% aqueous CH CN (600 L). Then 5 L of the FDAA
Supplementary data
1
N
2
include MOL files and InChiKeys of the most important compounds
described in this article.
l
3
l
a
L
(L
l
l
References and notes
3
l
1.
Dian Nan Ben Cao; Lan, M., Ed.; Yunnan People’s Publishing House: Kunming,
1978; pp 349–351.
4
l
2.
3.
4.
Zou, C.; Hao, X. J.; Zhou, J. Acta Bot. Yunnanica 1993, 15, 399.
He, M.; Zou, C.; Hao, X. J.; Zhou, J. Acta Bot. Yunnanica 1993, 15, 408.
Shen, X. Y.; Wu, H. M.; He, M.; Hao, X. J.; Zhou, J. Acta Chem. Sinica 1996, 54,
1194.
3
1
5.
6.
7.
Chen, Y. Q.; Luo, Y. R. Youji Huaxue 1991, 11, 523.
Liou, M. J.; Wu, P. L.; Wu, T. S. Chem. Pharm. Bull. 2002, 50, 276.
Liou, M. J.; Teng, C. M.; Wu, T. S. J. Chin. Chem. Soc. 2002, 49, 1025.
l
D and L-configurations
8. Tao, J.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull.
003, 51, 654.
Zou, C.; Hao, X. J.; Chen, C. X.; Zhou, J. Acta Bot. Yunnanica 1992, 14, 114.
0. Zou, C.; Hao, X. J.; Chen, C. X.; Zhou, J. Acta Bot. Yunnanica 1993, 15, 89.
2
6
3
l
9.
L
l
1
11. Xu, X. Y.; Zhou, J. Y.; Fang, Q. C. J. Chin. Pharm. Sci. 1995, 4, 157.
12. Zou, C.; Hao, X. J.; Chen, C. X.; Zhou, J. Acta Bot. Yunnanica 1999, 21, 256.
l
1
1
3. Liou, M. J.; Wu, T. S. J. Nat. Prod. 2002, 65, 1283.
4. Morikawa, T.; Tao, J.; Ando, S.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2003,
3
l
l
derivative was analyzed by HPLC.
The retention times (min) of the
amino acids were observed to be
6
6, 638.
L
-FDAA derivatives of standard
-Ala (14.275), -Ala (19.387),
-Glu hydrolyzed with 6 N HCl
-Glu hydrolyzed with 6 N HCl (13.229,
3.685), respectively. The retention times (min) of the -FDAA
15. Itokawa, H.; Takeya, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Mihara, K. Chem.
Pharm. Bull. 1984, 32, 284.
L
D
16. Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Serisawa, N.; Hamanaka, T.;
L-Glu (11.273),
D
-Glu (13.179)
L
Mihashi, S. Chem. Pharm. Bull. 1984, 32, 3216.
17. Tan, N. H.; Zhou, J. Chem. Rev. 2006, 106, 840.
(
11.304, 18.114) and
D
1
8. Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S.
K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040.
9. Lee, J. E.; Hitotsuyanagi, Y.; Kim, I. H.; Hasuda, T.; Takeya, K. Bioorg. Med. Chem.
Lett. 2008, 18, 808.
2
L
derivatives of acid hydrolysates of compounds 1–6 were summa-
rized as follows: 1, -Ala (14.334), -Ala (19.465); 2, -Ala
-Glu (18.218), -Ala (19.522); 3, -Ala (14.388), -Glu
-Ala (14.248), -Ala (19.578); 5, -Ala
-Ala (14.372), -Ala (19.794).
1
L
D
L
2
2
0. Lee, J. E.; Hitotsuyanagi, Y.; Takeya, K. Tetrahedron 2008, 64, 4117.
1. Lee, J. E.; Hitotsuyanagi, Y.; Fukaya, H.; Kondo, K.; Takeya, K. Chem. Pharm. Bull.
(14.391),
(18.212),
(14.395),
L
D
D
D
L
L
-Ala (19.512); 4,
-Ala (19.710); 6,
L
D
L
2008, 56, 730.
L
D
2
2
3. Tobey, R. A.; Orlicky, D. J.; Deaven, L. L.; Rall, L. B.; Kissane, R. J. Cancer Res. 1978,
8, 4415.
4. Zalacain, M.; Zaera, E.; Vazquez, D.; Jimenez, A. FEBS Lett. 1982, 148, 95.
3
.6. Acidic hydrolysis of compound 4
3
Compound 4 (10 mg) was hydrolyzed with 2 M HCl-dioxane
1:1, 4 mL) under reflux at 80 °C for 6 h. The reaction mixture
was extracted with CHCl
three times (2 mL ꢁ 3). The aqueous
layer was neutralized with 2 M NaOH and then dried to give a
25. Sirdeshpande, B. V.; Toogood, P. L. Bioorg. Chem. 1995, 23, 460.
2
2
6. Fujiwara, H.; Saito, S. Y.; Hitotsuyanagi, Y.; Takeya, K.; Ohizumi, Y. Cancer Lett.
004, 209, 223.
7. Koizumi, T.; Abe, M.; Yamakuni, T.; Ohizumi, Y.; Hitotsuyanagi, Y.; Takeya, K.;
(
2
3
Sato, Y. Cancer Sci. 2006, 97, 665.