6202
R. Subiros-Funosas et al. / Tetrahedron Letters 50 (2009) 6200–6202
Table 2
References and notes
Relative percentages of pentapeptide/des-Aib with various coupling reagents
1. El-Faham, A.; Subirós-Funosas, R.; Prohens, R.; Albericio, F. Chem. Eur. J. in
2. Subirós-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Chem.
3. Carpino, L. A.; Imazumi, H.; El-Faham, A.; Ferrer, F. J.; Zhang, C.; Lee, Y.;
Foxman, B. M.; Henklein, P.; Hanay, C.; Mügge, C.; Wenschuh, H.; Klose, J.;
Beyermann, M.; Bienert, M. Angew. Chem., Int. Ed. 2002, 41, 441–445.
4. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27,
4945–4948.
Coupling reagent
Pentapeptide (%)
Des-Aib (%)
Yield (%)
COMU (1)
HBTU (7)
HATU (8)
92.1
23.1
79.5
7.9
76.9
20.5
88.5
20.5
76.0
the Oxyma moiety contained in the coupling reagent were de-
tected. However, traces of guanidylation were found at the dipep-
tide stage23 with each coupling reagent, during the introduction of
the first Aib residue.
5. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225–
9283.
6. de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164–178.
7. Chen, S. T.; Chiou, S. H.; Wang, K. T. J. Chin. Chem. Soc. 1991, 38, 85–91.
8. Palasek, S. A.; Cox, Z. J.; Collins, J. M. J. Pept. Sci. 2007, 13, 143–148.
9. Coantic, S.; Subra, G.; Martinez, J. Int. J. Pept. Res. Ther. 2008, 14, 143–147.
10. Bacsa, B.; Desai, B.; Dibo, G.; Kappe, C. O. J. Pept. Sci. 2006, 12, 633–638.
11. Katrizky, A. R.; Khashab, N. M.; Yoshioka, M.; Haase, D. N.; Wilson, K. R.;
Johnson, J. V.; Chung, A.; Haskell-Luevano, C. Chem. Biol. Drug Des. 2007, 70,
465–468.
12. Cemazar, M.; Craik, D. J. J. Pept. Sci. 2008, 14, 683–689.
13. Brandt, M.; Gammeltoft, S.; Jensen, K. J. Int. J. Pept. Res. Ther. 2006, 12, 349–357.
14. Nagaike, F.; Onuma, Y.; Kanazawa, C.; Hojo, H.; Ueki, A.; Nakahara, Y.;
Nakahara, Y. Org. Lett. 2006, 8, 4465–4468.
15. Peindy N’dongo, H. W.; Ott, I.; Gust, R.; Schatzschneider, U. J. Organomet. Chem.
2009, 694, 823–827.
16. Leta Aboye, T.; Clark, R. J.; Craik, D. J.; Goransson, U. ChemBioChem 2008, 9,
103–113.
17. El-Faham, A.; Albericio, J. Org. Chem. 2008, 73, 2731–2737.
18. Garcia-Martin, F.; Quintanar-Audelo, M.; Garcia-Ramos, Y.; Cruz, L. J.; Gravel,
C.; Furic, R.; Côté, S.; Tulla-Puche, J.; Albericio, F. J. Comb. Chem. 2006, 8, 213–
220.
In summary, here we demonstrate the compatibility of Oxyma-
based COMU 1 with microwave-assisted SPPS, during the auto-
mated synthesis of Aib-enkephalin pentapeptide. The Oxyma moi-
ety contained in COMU also displayed high nucleophilic stability to
the N-terminus of the growing peptide chain, as shown by the ab-
sence of Oxyma-based byproducts. Consistent with the previous
reports, COMU showed better performance than classical immoni-
um salts HATU and HBTU, which yielded lower percentages of the
desired pentapeptide. On the basis of our findings, we conclude
that the combination of COMU and microwave irradiation is an
efficient approach for SPPS, as it yielded more than 90% of Aib-
enkephalin, a highly demanding pentapeptide, in considerably less
time than the conventional manual synthesis.
19. García-Martín, F.; White, P.; Steinauer, R.; Côté, S.; Tulla- Puche, J.; Albericio, F.
Biopolymers (Pept. Sci.) 2006, 84, 566–575.
20. de la Torre, B. G.; Jakab, A.; Andreu, D. Int. J. Pept. Res. Ther. 2007, 13,
265–270.
Acknowledgments
This work was partially supported by CICYT (CTQ2006-03794/
BQU), Luxembourg Bio Technologies, Ltd., the Generalitat de Catalu-
nya (2005SGR 00662), the Institute for Research in Biomedicine,
and the Barcelona Science Park. R.S.-F. thanks the Ministerio de Edu-
cación y Ciencia for a FPU Ph.D. fellowship.
21. Frutos, S.; Tulla-Puche, J.; Albericio, F.; Giralt, E. Int. J. Pept. Res. Ther. 2007, 13,
221–227.
22. Common microwave protocols were used, showing the compatibility of COMU,
HATU, and HBTU with those protocols.
23. Albericio, F.; Bofill, J. M.; El-Faham, A.; Kates, S. A. J. Org. Chem. 1998, 63, 9678–
9683.