7810
A. Boto et al. / Tetrahedron Letters 46 (2005) 7807–7811
Walton, J. C. Angew. Chem., Int. Ed. 2001, 40, 2224–2248;
(g) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271–1287; (h)
Yet, L. Tetrahedron 1999, 55, 9349–9403.
sumura, Y.; Tsubata, K. Tetrahedron Lett. 1981, 22, 3249–
3252.
1
13. (a) Compound 21b: H NMR (500 MHz) d 4.55 (1H, dd,
J = 6.3 Hz, JH,P = 17.4 Hz), 3.95 (1H, d, J = 12.8 Hz),
3.65 (3H, d, JH,P = 10.5 Hz), 3.64 (3H, d, JH,P = 10.6 Hz),
3.61 (3H, s), 3.14 (1H, ddd, J = 2.6, 13.1, 13.3 Hz), 1.96
(1H, m), 1.81 (1H, m), 1.64 (1H, m), 1.55 (2H, m), 1.29
(1H, m); 13C NMR (125.7 MHz): d 155.9 (C), 52.6 (CH3),
52.4 (CH3, d, JC,P = 6.9 Hz), 52.1 (CH3, d, JC,P = 7.1 Hz),
48.2 (CH, d, JC,P = 152.0 Hz), 41.5 (CH2), 25.0 (CH2),
24.5 (CH2), 20.0 (CH2); MS (EI, 70 eV), m/z: 251 (M+, 8),
143 (30), 142 (100); HRMS: calcd for C9H18NO5P
251.0923, found 251.0935. For a similar result, see: (b)
6. Oxidation of the C-radical to an N-acyliminium ion: (a)
´
´
Boto, A.; Hernandez, R.; de Leon, Y.; Gallardo, J. A. Eur.
J. Org. Chem. 2005, 3461; (b) Iglesias-Arteaga, M. A.;
Juaristi, E.; Gonzalez, F. J. Tetrahedron 2004, 60, 3605–
´
´
3610; (c) Boto, A.; Hernandez, R.; Montoya, A.; Suarez,
E. Tetrahedron Lett. 2004, 45, 1559–1563; (d) Iglesias-
Arteaga, M. A.; Castellanos, E.; Juaristi, E. Tetrahedron:
´
Asymmetry 2003, 14, 577–580; (e) Boto, A.; Hernandez,
´
R.; Montoya, A.; Suarez, E. Tetrahedron Lett. 2002, 43,
8269–8272; (f) Iglesias-Arteaga, M. A.; Avila-Ortiz, C. G.;
´
´
Juaristi, E. Tetrahedron Lett. 2002, 43, 5297–5300; (g)
Boto, A.; Hernandez, R.; Suarez, E. Tetrahedron Lett.
´
´
´
Boto, A.; Hernandez, R.; Leon, Y.; Suarez, E. J. Org.
1999, 40, 5945–5948.
Chem. 2001, 65, 7796–7803; (h) Boto, A.; Hernandez, R.;
Suarez, E. Tetrahedron Lett. 2000, 41, 2495–2498, and
references cited therein.
14. Compound 22: 1H NMR (500 MHz) d 4.47 (1H, br b,
NH), 3.77 (6H, d, JH,P = 10.5 Hz), 3.64 (3H, s), 2.33 (2H,
m), 1.76 (2H, dddd, J = 3.9, 4.0, 13.1, 13.3 Hz), 1.67–1.55
(2H, m), 1.49 (2H, m), 1.27 (2H, m); 13C NMR
(125.7 MHz): d 155.3 (C), 55.9 (C, d, JC,P = 160 Hz),
53.1 (2·CH3, d, JC,P = 7.2 Hz), 51.6 (CH3), 30.0 (2·CH2),
25.1 (CH2), 20.4 (CH2), 20.2 (CH2); MS (EI, 70 eV), m/z:
266 (M++H, 1), 265 (M+, 1), 234 (2), 191 (3), 156 (100);
HRMS: calcd for C10H20NO5P 265.1079, found 265.1089.
15. (a) Compound 24: 1H NMR (500 MHz, 26 ꢁC) d 5.10 (1H,
m), 4.48 (1H, m), 3.89 (1H, dd, J = 6.5, 11.5 Hz), 3.71
(3H, d, JH,P = 10.7 Hz), 3.70 (3H, d, JH,P = 10.6 Hz), 3.45
(1H, dd, J = 4.7, 11.5 Hz), 2.5–2.3 (2H, m), 2.00 (3H, s),
1.99 (3H, s); 1H NMR (400 MHz, C6D6, 26 ꢁC) d 4.80
(1H, m), 4.53 (1H, m), 3.74 (3H, d, JH,P = 10.8 Hz), 3.57
(3H, d, JH,P = 10.5 Hz), 3.33 (2H, m), 2.46 (1H, m), 1.93
(1H, m), 1.82 (3H, s), 1.68 (3H, s); 13C NMR (125.7 MHz,
26 ꢁC): d 170.5 (C), 168.9 (C), 71.8 (CH), 53.2 (CH3, d,
JC,P = 6.8 Hz), 52.6 (CH3, d, JC,P = 6.3 Hz), 52.6 (CH2),
50.7 (CH, d, JC,P = 160 Hz), 31.9 (CH2), 22.0 (CH3), 20.8
(CH3); MS (EI, 70 eV), m/z: 280 (M++H, 2), 219 (M+, 20),
110 (90), 109 (3), 68 (100); HRMS: calcd for C10H19NO6P
280.0950, found 280.0947; (b) The spectroscopic data of
compound 25 were very similar, the main differences being
observed in the 1H NMR spectrum (500 MHz, 26 ꢁC) d
5.36 (1H, m), 4.73 (1H, m), 3.83 (1H, m), 3.78 (6H, d,
JH,P = 10.3 Hz), 3.60 (1H, m), 2.61 (1H, m), 2.23 (1H, m),
2.09 (3H, m), 2.01 (3H, s).
´
´
7. For a discussion of the role of the Lewis acid in similar
´
´
reactions, see: Boto, A.; Hernandez, R.; Suarez, E. J. Org.
Chem. 2000, 64, 4930–4937, and references cited therein.
8. For examples of addition of phosphorous nucleophiles to
imines and iminium ions, see Ref. 1a and also: (a)
Kaboudin, B.; Moradi, K. Tetrahedron Lett. 2005, 46,
2989–2991; (b) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe,
K. Org. Lett. 2005, 7, 2583–2585; (c) De Risi, C.; Perrone,
D.; Dondoni, A.; Pollini, G. P.; Bertolasi, V. Eur. J. Org.
Chem. 2003, 1904–1914; (d) Stevens, C. V.; Vekemans, W.;
Moonen, K.; Rammeloo, T. Tetrahedron Lett. 2003, 44,
1619–1622, and references cited therein.
9. (a) All new compounds were characterized by H and 13
C
1
NMR, MS, HRMS, IR and elemental analysis. 2D-
COSY, HSQC and NOESY experiments were also carried
out. Selected NMR and mass spectra data are given. The
NMR spectra were recorded in CDCl3 at 70 ꢁC unless
1
otherwise stated; (b) Compound 17: H NMR (500 MHz)
d 7.51 (2H, d, J = 8.1 Hz), 7.4–7.3 (3H, m), 4.82 (1H, m),
3.77 (3H, d, JH,P = 10.5 Hz), 3.76 (3H, d, JH,P = 10.5 Hz),
3.59 (1H, ddd, J = 7.6, 7.7, 10.6 Hz), 3.47 (1H, m), 2.2–2.1
(2H, m), 1.78 (1H, m); 13C NMR (125.7 MHz): d 170.3
(C), 136.6 (C), 130.2 (CH), 128.2 (2·CH), 127.6 (2·CH),
53.0 (CH3, d, JC,P = 7.0 Hz), 52.7 (CH3, d, JC,P = 6.4 Hz),
52.2 (CH, d, JC,P = 163 Hz), 49.9 (CH2), 26.0 (CH2), 25.0
(CH2). MS (EI, 70 eV), m/z: 283 (M+, 8), 178 (4), 174 (69),
105 (100); HRMS: calcd for C13H18NO4P 283.0973, found
283.0968.
16. (a) The stereochemistry of compound 24 was determined
with a COSY experiment (400 MHz, C6D6). Thus, a
strong coupling was observed between 4-H (dH 4.80) and
3b-H (dH 1.93) and between 3b-H (dH 1.93) and 2-H (dH
4.53). In contrast, the coupling between 3a-H (dH 2.46)
and 4-H or 2-H was very weak, as expected for 2-H,3a-H
trans and 4-H,3a-H trans relationships; (b) In the case of
compound 25, the COSY experiment (500 MHz, CDCl3)
showed a strong coupling between 4-H (dH 5.36) and 3b-H
(dH 2.61). The coupling between 3a-H (dH 2.23) and 2-H
(dH 4.73) was also observe. The nucleophile was added
from the apparently more hindered face. For similar
results, see: (c) Yoda, H.; Egawa, T.; Takabe, K. Tetra-
hedron Lett. 2003, 44, 1643–1646, and references cited
therein.
10. The fragmentation of carboxyl radicals proceeds much
faster than the fragmentation of alkoxyl radicals. Thus,
Kfrag (RCOOÅ) = 1010 À1, Kfrag (PhCOOÅ) = 106 sÀ1 and
s
Kfrag (tBuOÅ) = 105 sÀ1. For a discussion on the subject,
see: Fossey, J.; Lefort, D.; Sorba, J. Free Radicals in
Organic Chemistry; Wiley: Chichester, 1995; pp 96, 148–
149, 223–225 and 295.
11. Compound 19: 1H NMR (500 MHz) d 7.35 (2H, dd,
J = 7.8, 8.1 Hz), 7.34 (2H, dd, J = 8.1, 8.0 Hz), 7.21–7.13
(6H, m), 4.70 (1H, m), 4.66 (1H, dd, J = 5.0, 16.8 Hz),
4.30 (1H, d, J = 13.5 Hz), 4.16 (1H, d, J = 12.1 Hz), 3.79
(3H, d, JH,P = 11 Hz), 3.78 (3H, d, JH,P = 11 Hz), 3.70
(1H, m), 3.40 (1H, m), 3.08 (1H, m); 13C NMR
(125.7 MHz): d 153.6 (C), 153.2 (C), 151.6 (C), 151.4
(C), 129.2 (2·CH), 129.1 (2·CH), 125.5 (CH), 125.2 (CH),
121.5 (2·CH), 121.3 (2·CH), 53.0 (CH3, d, JC,P = 7.0 Hz),
17. (a) Compound 27: 1H NMR (500 MHz, À50 ꢁC) d 7.94
(1H, s, OCHO), 6.44 (1H, d, J = 9.8 Hz, NH), 5.59 (1H,
dd, J = 7.1, 7.4 Hz, 3-H), 5.50 (1H, dd, J = 4.9, 6.4 Hz, 4-
H), 5.23 (1H, ddd, J = 5.1, 5.1, 5.3 Hz, 5-H), 4.89 (1H,
ddd, J = 2.4, 10.4 Hz, JH,P = 22.7 Hz, 2-H), 4.30 (1H, dd,
J = 4.7, 12.1 Hz, 6-Ha), 4.10 (1H, dd, J = 6.4, 11.8 Hz, 6-
Hb), 3.77 (3H, d, JH,P = 9.8 Hz, OMe), 3.75 (3H, d,
JH,P = 10.3 Hz, OMe), 2.15 (3H, s, Ac), 2.12 (3H, s, Ac),
2.10 (6H, s, 2·Ac); 13C NMR (125.7 MHz, 26 ꢁC): d 170.5
(C, CO), 170.1 (C, CO), 169.8 (C, CO), 169.6 (C, CO),
159.4 (CH, CHO), 70.1 (CH, d, JC,P = 11.5 Hz, 4-C), 69.0
52.8 (CH3, d, JC,P = 7.0 Hz), 48.5 (CH, d, JC,P
=
151.0 Hz), 43.6 (CH2), 43.0 (CH2), 41.2 (CH2); MS (EI,
70 eV), m/z: 435 (M++H, 1), 434 (M+, 1), 342 (18), 341
(99), 93 (100); HRMS: calcd for C20H23N2O7P 434.1243,
found 434.1248.
12. For very similar compounds, see: (a) Yuan, C.; Wang, G.;
Chen, S. Synthesis 1990, 522–524; (b) Shono, T.; Mat-