C O MMU N I C A T I O N S
expected mass (BsCM*: found 14 502 ( 2 daltons, expected
4 503 daltons; Arg90Cit BsCM*: found 14 503 ( 2 daltons,
bond donor involved in selective stabilization of chorismate in the
transition state. It is noteworthy that structurally unrelated AroQ
1
7
9
expected 14 504 daltons). Their circular dichroism spectra are
superimposable on that of the recombinant enzyme purified under
native conditions, indicating identical overall secondary structure.
Like recombinant BsCM, they are homotrimeric in solution, eluting
as a single peak with identical retention times from a Superose 12
size-exclusion column. Their trimeric quaternary structure was
additionally confirmed by sedimentation velocity ultracentrifugation,
which yielded average molecular masses of 41 500 and 43 600
daltons for semisynthetic BsCM* and for the citrulline variant,
respectively, in good agreement with the expected mass for a trimer
of 43 509 daltons.
mutases such as EcCM and ScCM have a similarly positioned
cation, albeit a lysine rather than an arginine, whereas the relatively
2
2
inefficient catalytic antibody 1F7 lacks this feature. Efficient
catalysis of the chorismate mutase rearrangement evidently requires
more than an active site that is simply complementary in shape to
the reactive substrate conformer;12 electrostatic stabilization of the
polarized transition state appears to be paramount.
Acknowledgment. We thank Stefan van Sint Fiet for preparing
the D102E mutant, Angelo Guainazzi for optimization of the BsCM-
(1-87) thioester, Dr. Rosalino Pulido for the synthesis of 4, and
the Swiss National Foundation, the ETH Z u¨ rich and Novartis
Pharma for generous support of this work.
Semisynthetic BsCM* is fully active as a catalyst, affording kcat
and K
are indistinguishable from those of its recombinant counterpart
Table 1). The Arg90Cit variant is also active, albeit substantially
m
parameters for the chorismate mutase rearrangement that
(
Supporting Information Available: Experimental details for the
synthesis and characterization of BsCM* and Arg90Cit BsCM*. This
material is available free of charge via the Internet at http://pubs.acs.org.
less so than the wild-type enzyme. Replacement of arginine by
4
citrulline causes a >10 -fold decrease in kcat and a more modest
2
.7-fold increase in the K
small change in K suggests only minor perturbation of the ground-
state Michaelis complex, although the nonequality of K and the
m
value for chorismate (Table 1). The
References
m
m
(
1) Haslam, E. Shikimic Acid: Metabolism and Metabolites; John Wiley &
Sons: New York, 1993.
dissociation constant for chorismate for wild-type BsCM19 precludes
accurate quantification of this effect. In contrast, the destabilizing
effect of the Arg90Cit mutation on apparent transition state binding
(
2) Copley, S. D.; Knowles, J. R. J. Am. Chem. Soc. 1985, 107, 5306-5308.
Sogo, S. G.; Widlanski, T. S.; Hoare, J. H.; Grimshaw, C. E.; Berchtold,
G. A.; Knowles, J. R. J. Am. Chem. Soc. 1984, 106, 2701-2703.
3) Addadi, L.; Jaffe, E. K.; Knowles, J. R. Biochemistry 1983, 22, 4494-
(
can be estimated directly from the equation ∆∆G ) RT ln[(kcat
/
4
501. Gustin, D. J.; Mattei, P.; Kast, P.; Wiest, O.; Lee, L.; Cleland, W.
m m
K )mut/(kcat/K )
WT] to be 6.5 kcal/mol. Effects on catalysis and
W.; Hilvert, D. J. Am. Chem. Soc. 1999, 121, 1756-1757. Wiest, O.;
Houk, K. N. J. Org. Chem. 1994, 59, 7582-7584.
protein stability of similar magnitude have been observed previously
upon removal of a charged hydrogen bond donor or acceptor from
a buried salt bridge,20 supporting the idea that the guanidinium group
of Arg90 forms a complementary electrostatic interaction with the
developing negative charge at the ether oxygen of chorismate in
the transition state.
The ligand binding properties of Arg90Cit BsCM* were further
probed with the conformationally constrained inhibitor 4,17 which
mimics the geometry of the chorismate mutase transition state
reasonably well but not its dissociative character. Paralleling the
(4) Chook, Y. M.; Ke, H.; Lipscomb, W. N. Proc. Natl. Acad. Sci. U.S.A.
1
993, 90, 8600-8603. Chook, Y. M.; Gray, J. V.; Ke, H.; Lipscomb, W.
N. J. Mol. Biol. 1994, 240, 476-500.
(5) Cload, S. T.; Liu, D. R.; Pastor, R. M.; Schultz, P. G. J. Am. Chem. Soc.
1996, 118, 1787-1788. Kast, P.; Asif-Ullah, M.; Jiang, N.; Hilvert, D.
Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5043-5048.
6) Kast, P.; Grisostomi, C.; Chen, I. A.; Li, S.; Krengel, U.; Xue, Y.; Hilvert,
D. J. Biol. Chem. 2000, 47, 36832-36838.
(
(
(
7) Lee, A. Y.; Karplus, P. A.; Ganem, B.; Clardy, J. J. Am. Chem. Soc.
1995, 117, 3627-3628.
8) Liu, D. R.; Cload, S. T.; Pastor, R. M.; Schultz, P. G. J. Am. Chem. Soc.
1
996, 118, 1789-1790. Zhang, S.; Kongsaeree, P.; Clardy, J.; Wilson,
D. B.; Ganem, B. Bioorg. Med. Chem. 1996, 4, 1015-1020.
(
9) Str a¨ ter, N.; Schnappauf, G.; Braus, G.; Lipscomb, W. N. Structure 1997,
5
m
small increase in K for chorismate, the inhibition constant value
, 1437-1452.
for 4 increases 5.7-fold upon mutation (Table 1), which corresponds
to a 1.1 kcal/mol less favorable free energy of binding. The
moderate decrease in affinity for the transition state analogue
contrasts dramatically with the much larger destabilization of the
true transition state. The neutral urea group of citrulline apparently
interacts only slightly less well than the positively charged
guanidinium group with the neutral ether oxygen of the stable
inhibitor (and, by analogy, that of chorismate in the ground state),
but it is more than 4 orders of magnitude worse at accommodating
the partially anionic ether oxygen in the transition state.
(
10) Lyne, P. D.; Mulholland, A. J.; Richards, W. G. J. Am. Chem. Soc. 1995,
117, 11345-11350.
(
11) Worthington, S. E.; Roitberg, A. E.; Krauss, M. J. Phys. Chem. B 2001,
105, 7087-7095.
(12) Hur, S.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1176-
181.
13) Khanjin, N. A.; Snyder, J. P.; Menger, F. M. J. Am. Chem. Soc. 1999,
21, 11831-11846.
(14) Dawson, P. E.; Kent, S. B. H. Annu. ReV. Biochem. 2000, 69, 923-960.
1
(
1
(
(
(
15) Evans, T. C.; Benner, J.; Xu, M.-Q. Protein Sci. 1998, 7, 2256-2264.
16) MacBeath, G.; Kast, P.; Hilvert, D. Biochemistry 1998, 37, 10062-10073.
17) Bartlett, P. A.; Nakagawa, Y.; Johnson, C. R.; Reich, S. H.; Luis, A. J.
Org. Chem. 1988, 53, 3195-3210.
(
18) Gray, J. V.; Golinelli-Pimpaneau, B.; Knowles, J. R. Biochemistry 1990,
Not surprisingly, even more deleterious effects are observed when
either of the partners in the salt bridge is replaced with a non-
hydrogen-bonding group. For example, mutation of Arg90 to alanine
29, 376-383.
(19) Mattei, P.; Kast, P.; Hilvert, D. Eur. J. Biochem. 1999, 261, 25-32.
(
20) See, for example: Phillips, M. A.; Fletterick, R.; Rutter, W. J. J. Biol.
Chem. 1990, 265, 20692-20698. Tissot, A. C.; Vuilleumier, S.; Fersht,
A. R. Biochemistry 1996, 35, 6786-6794.
5,6
results in a complete loss of catalytic activity, whereas wild-type
BsCM is unable to catalyze the analogous Cope rearrangement of
carbaprephenate into carbachorismate,21 in which an apolar meth-
ylene group replaces the ether oxygen.
(21) Aemissegger, A.; Jaun, B.; Hilvert, D. J. Org. Chem. 2002, 67, 6725-
6730.
(
22) Haynes, M. R.; Stura, E. A.; Hilvert, D.; Wilson, I. A. Science 1994,
263, 646-652. Hilvert, D.; Carpenter, S. H.; Nared, K. D.; Auditor, M.-
T. M. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4953-4955.
Taken together, these results demonstrate the importance of
Arg90 at the active site of BsCM as a positively charged hydrogen
JA0341992
J. AM. CHEM. SOC.
9
VOL. 125, NO. 11, 2003 3207