Essential for the success of our concept has been the design
of the dendritic nanocarrier which in our case is hyper-
branched poly(ethylene imine) (PEI) decorated to a different
degree of modification by maltose units (PEI–Mal with struc-
tures A–C). We evaluated in detail the complexation capacities
of these structures towards ATP. One has to note that the
uptake of ATP alters the properties of PEI–Mal, e.g. the
surface charge changes and thus, in the case of structure C
immediate precipitation occurs during ATP uptake. Finally we
were able to identify PEI–Mal-B25, core–shell structures with
a 25 K PEI core having mainly mono-substitution on the
terminal amino functions with maltose, as the ideal candidate
for well-balanced interactions, firstly, because of excellent
retention of PEI–Mal-B25 within the boronic acid modified
hydrogel at pH 5.4 and 7.4 and secondly, because of very good
uptake and release properties towards ATP. Two types of
interactions are present between ATP and PEI–Mal: strong
electrostatic ones between the positively charged PEI core and
the anionic ATP and weaker hydrogen bonding through the
maltose shell. Thus, ATP is bound to the PEI core much
tighter than within the maltose shell. Depending on the
amount of the hosted ATP and the pH, a two-step release
can be realized for the drug and later at lower pH for the
dendritic nanocarrier.
(b) K. Gardikis, S. Hatziantoniou, M. Signorelli, M. Pusceddu,
M. Micha-Screttasc, A. Schiraldi, C. Demetzos and D. Fessas,
Colloids Surf., B, 2010, 81, 11.
4 (a) A. Kroger, X. Li and A. Eisenberg, Langmuir, 2007, 23, 10732;
¨
(b) X.-L. Lou, F. Cheng, P.-F. Cao, Q. Tang, H.-J. Liu and
Y. Chen, Chem.–Eur. J., 2009, 15, 11566; (c) Y. Zhang,
W. Huang, Y. Zhou and D. Yan, J. Phys. Chem. B, 2009,
113, 7729.
´
5 M. Elsabahy, N. Wazen, N. Bayo-Puxan, G. Deleavey,
M. Servant, M. J. Damha and J.-C. Leroux, Adv. Funct. Mater.,
2009, 19, 3862.
6 V. A. Kabanov, A. B. Zezin, V. B. Rogacheva, T. V. Panova,
E. V. Bykova, J. G. H. Joosten and J. Brackman, Faraday Discuss.,
2005, 128, 341.
7 X.-Y. Wu, S.-W. Huang, J.-T. Zhang and R.-X. Zhuo, Macromol.
Biosci., 2004, 4, 71.
8 J.-T. Zhang, S.-W. Huang and R.-X. Zhuo, Macromol. Biosci.,
2004, 4, 575.
9 P. N. Desai, Q. Yuan and H. Yang, Biomacromolecules, 2010,
11, 666.
10 Y. Kanekiyo, H. Tao and B. Sellergren, Polym. J. (Tokyo), 2008,
40, 684.
11 R. S. Navath, A. R. Menjoge, B. Wang, R. Romero, S. Kannan
and R. M. Kannan, Biomacromolecules, 2010, 11, 1544.
12 H. Zhang, C. Zhao, H. Cao, G. Wang, L. Song, G. Niu, H. Yang,
J. Ma and S. Zhu, Biomaterials, 2010, 31, 5445.
13 S. V. Vinogradov, A. D. Zeman, E. V. Batrakova and
A. V. Kabanov, J. Controlled Release, 2005, 107, 143–157.
14 T. Suehiro, T. Tada, T. Waku, N. Tanaka, C. Hongo,
S. Yamamoto, A. Nakahira and C. Kojima, Biopolymers, 2011,
95, 270.
In summary, with our optimized drug@PEI–Mal@hydrogel
hybrid system the concept of a multicompartment release
system could be well demonstrated and it offers the possibility
for the development of the next generation of drug delivery
systems.
15 M. E. Byrne and V. Salian, Int. J. Pharm., 2008, 364, 188.
16 X. Chen, S. Chen and J. Wang, Analyst, 2010, 135, 1736.
17 M. Dadsetan, Z. Liu, M. Pumberger, C. V. Giraldo, T. Ruesink,
L. Lu and M. J. Yaszemski, Biomaterials, 2010, 31, 8051.
18 A. W. Chan and R. J. Neufeld, Biomaterials, 2010, 31, 9040.
19 J. C. Garbern, A. S. Hoffman and P. S. Stayton, Biomacromolecules,
2010, 11, 1833.
20 (a) V. P. Kumar, A. Asthana, T. Dutta and N. K. Jain, J. Drug
Targeting, 2006, 14, 546; (b) P. Argawal, U. Gupta and N. K. Jain,
Biomaterials, 2007, 28, 3349; (c) Y. M. Chabre and R. Roy, Curr.
Top. Med. Chem., 2008, 8, 1237; (d) B. Voit and D. Appelhans,
Macromol. Chem. Phys., 2010, 211, 727.
Acknowledgements
This work was funded by the Saxon Ministry for Science
and Art, the German Ministry for Education and Science
(BMBF project ‘‘BioSAT’’ – 03WKP08) and the SFB-TR 79
21 F. Jackele, Coord. Chem. Rev., 2006, 250, 1107.
¨
22 D. Appelhans, H. Komber, M. A. Quadir, S. Richter, S. Schwarz,
‘‘Werkstoffe fur die Geweberegeneration im systemisch
¨
J. van der Vlist, A. Aigner, M. Muller, K. Loos, J. Seidel,
¨
K.-F. Arndt, R. Haag and B. Voit, Biomacromolecules, 2009, 10,
erkrankten Knochen’’. The work was also done in the COST
Action TD0802 ‘‘Dendrimers for biomedical applications’’.
The authors are grateful to Mrs Caspari (IPF Dresden) and
Mrs Krause for carrying out DLS and zeta potential investi-
gations, Dr Formanek for carrying out SEM investigation
and Mr Goebel for making cryo-SEM pictures. Pranav
Dhanapal thanks the DAAD for financial support in
‘‘Summer Internship in Polymer Science and Technology
May 2010–July 2010’’.
1114–1124.
23 S. Hobel, A. Loos, D. Appelhans, S. Schwarz, J. Seidel, B. Voit
¨
and A. Aigner, J. Controlled Release, 2011, 149, 146.
24 (a) D. Bhadra, A. K. Yadav, S. Bhadra and N. K. Jain, Int. J.
Pharm., 2005, 295, 221; (b) T. Dutta and N. K. Jain, Biochim.
Biophys. Acta, Gen. Subj., 2007, 1770, 681.
25 (a) I. Papp, J. Dernedde, S. Enders and R. Haag, Chem. Commun.,
2008, 5851; (b) R. Kikkeri, I. Garcia-Rubio and P. H. Seeberger,
Chem. Commun., 2009, 235.
26 (a) F. Leclercq, C. Dubertret, B. Pitard, D. Scherman and
J. Herscovici, Bioorg. Med. Chem. Lett., 2000, 10, 1233;
(b) B. Ziemba, A. Janaszewska, K. Ciepluch, M. Krotewicz,
W. A. Fogel, D. Appelhans, B. Klajnert, B. Voit and
M. Bryszewska, J. Biomed. Mater. Res., 2011, 99, 261–268.
27 A. Richter, A. Jahnke, S. Zschoche, R. Zimmermann, F. Simon,
K.-J. Eichhorn, B. Voit and D. Appelhans, New J. Chem., 2010,
34, 2105.
28 F. Xia, H. Ge, Y. Hou, T. Sun, L. Chen, G. Zhang and L. Jiang,
Adv. Mater., 2007, 19, 2520.
29 D. Kuckling, Colloid Polym. Sci., 2009, 287, 881.
30 (a) M. E. Harmon, D. Kuckling, P. Pareek and C. W. Frank,
´
Langmuir, 2003, 19, 10947; (b) E. Dıez-Pena, I. Quijada-Garrido,
References
1 (a) A. W. Bosman, H. M. Janssen and E. W. Meijer, Chem. Rev.,
1997, 97, 1681; (b) B. I. Voit and A. Lederer, Chem. Rev., 2009,
109, 5924; (c) Y. Zhou, W. Huang, J. Liu, X. Zhu and D. Yan, Adv.
Mater., 2010, 22, 4567.
2 (a) R. Haag and F. Kratz, Angew. Chem., 2006, 118, 1218;
(b) R. K. Tekade, P. V. Kumar and N. K. Jain, Chem. Rev.,
´
2009, 109, 49; (c) M. Calderon, M. A. Quadir, M. Strumia and
R. Haag, Biochimie, 2010, 92, 1242; (d) Y. Cheng, L. Zhao, Y. Li
and T. Xu, Chem. Soc. Rev., 2010, 40, 2673; (e) M. Shen and
X. Shi, Nanoscale, 2010, 2, 1596.
3 (a) K. Gardikis, S. Hatziantoniou, M. Bucos, D. Fessas,
M. Signorelli, T. Felekis, M. Zervou, C. G. Screttas,
B. R. Steele, M. Ionov, M. Micha-Screttas, B. Klajnert,
M. Bryszewska and C. Demetzos, J. Pharm. Sci., 2010, 99, 3561;
P. Frutos and J. M. Barrales-Rienda, Macromolecules, 2002,
35, 2667; (c) D. C. Coughlan, F. P. Quilty and O. I. Corrigan,
J. Controlled Release, 2004, 98, 97.
31 R. A. Alberty and R. N. Goldberg, Biochemistry, 1992, 31, 10610.
32 Z. Song, K. J. Parker, I. Enoh, H. Zhao and O. Olubajo, Magn.
Reson. Chem., 2010, 48, 123.
c
450 New J. Chem., 2012, 36, 438–451
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012