6994
K. K. R. Tetala et al. / Tetrahedron Letters 45 (2004) 6991–6994
phase transfer conditions: Makosza, M.; Chesnokov, A.
A. Tetrahedron 2002, 58, 7295–7301.
10. Saluste, C. G. PhD Thesis, University of Southampton,
2002.
5. Crystallographic data (excluding structure factors) for 1a
has been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication number CCDC
243515. Copies of the data may be obtained, free of
charge, on application to CCDC, 12 Union Road,
Cambridge, CB2 1EZ, U.K. (fax: +44(0)-1223-336033 or
e-mail: deposit@ccdc.cam.ac.uk).
6. Stereochemistry of arylamidines was erroneously drawn as
(Z) in Ref. 1. We later showed it to be (E) on the basis of
low temperature NMR studies and calculations (Whitby,
R. J., unpublished work).
7. Perrin, C. L. In The Chemistry of Amidines and Imidates;
Patai, S., Rappoport, Z., Eds.; Wiley, 1991; p 150.
8. The (E)-imine of 1a is predicted to be 31kJ/mol more
stable that the (Z) imine by DFT calculations.15 The
barrier to E/Z interconversion of MeCH@CHC-
(@ NPh)NMe2 is 109kJ/mol. Naulet, M.; Filleux, M. L.;
Martin, G. J.; Pornet, J. Org. Magn. Reson. 1975, 7,
326–330, and, by analogy with the facile E/Z isomerisation
of N-tert-butylimidates (Refs. 7,14), the barrier for ami-
dines 1 would be expected to be lower.
11. The (E)-imine isomers of 2e, f and g are calculated15 to be
15, 19 and 20kJ/mol, respectively, more stable than the
(Z)-forms. Likewise (E)-3a is calculated15 to be 40kJ/mol
more stable than (Z)-3a.
12. Whitby, R. J.; Saluste, C. G.; Furber, M. Org. Biomol.
Chem. 2004, 2, 1974–1976.
13. Double carbonylation of b-bromostyrene to form
PhCH@CHCOCONEt2 is known. Ozawa, F.; Soyama,
H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett.
1982, 23, 3383–3386; Kobayashi, T.; Tanaka, M. J.
Organomet. Chem. 1982, 233, C64–C66; Double carbonyl-
ation of aryl iodides to afford a-keto-esters is also
known. Ozawa, F.; Kawasaki, N.; Okamoto, H.; Yama-
moto, T.; Yamamoto, A. Organometallics 1987, 6,
1640–1651.
14. Gallis, D. E.; Crist, D. R. Magn. Reson. Chem. 1987, 25,
480–483.
15. DFT calculations were carried out using the hybrid HF-
DFT B3LYP method and 6-31G basis set as implemented
*
in the Spartan04 program (Wavefunction Inc.): Kong, J.;
White, C. A.; Krylov, A. I.; Sherrill, D.; Adamson, R. D.;
Furlani, T. R.; Lee, M. S.; Lee, A. M.; Gwaltney, S. R.;
Adams, T. R.; Ochsenfeld, C.; Gilbert, A. T. B.; Kedziora,
G. S.; Rassolov, V. A.; Maurice, D. R.; Nair, N.; Shao, Y.
H.; Besley, N. A.; Maslen, P. E.; Dombroski, J. P.;
Daschel, H.; Zhang, W. M.; Korambath, P. P.; Baker, J.;
Byrd, E. F. C.; Van Voorhis, T.; Oumi, M.; Hirata, S.; Hsu,
C. P.; Ishikawa, N.; Florian, J.; Warshel, A.; Johnson, B.
G.; Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. J.
Comput. Chem. 2000, 21, 1532–1548.
9. The low barrier to C–N rotation of 1a comes from
energetically favourable overlap of the C@C and C@N
bonds in the transition state B, which is not possible in the
ground state A
‡
tBu
tBu
N
N
H
N
N
Ph
Ph
B
A