Dalton Transactions
Paper
Conclusions
References
In this work we have comprehensively studied the behavior of
a ditopic benzo-15-crown-5 bis-urea receptor L as an ion pair
receptor in the solid-state and the anion binding properties of
the receptor’s sodium and potassium complexes in solution.
The synthesized benzo-15-crown-5 receptor with bis-urea func-
tionality (L) has binding sites for both the cation and anion,
respectively. A total of 13 crystal structures, from which 10 are
complexes with alkali halides, show how L acts as a ditopic ion
pair receptor in the solid-state. With smaller (and with better
size-fit) sodium cation, L forms a 1 : 1 complex, and binds the
anion as a contact (Cl−) or separate (Br− and I−) ion pair,
depending on the size and the polarizability of the anion.
When complexed with larger potassium or rubidium cations, L
forms a dimeric structure with intermolecular hydrogen
bonding enhancing the dimerization. This dimeric complex
binds all halide anions (F−, Cl−, Br−, and I−) as a separated ion
pair in the solid-state, and the anion is always bound via
hydrogen bonds formed to the urea groups. Although
similar in the dimerization behavior, the structures obtained
with potassium and rubidium halides also show differences
to one another. For example, complex 2L·KF is actually a
tetramer, formed by dimer of dimers with the fluoride anion
being bound through a complex solvent-mediated hydrogen
1 J. W. Steed and J. L. Atwood, Supramolecular Chemistry,
Wiley, Chichester, UK, 2nd edn, 2009.
2 N. Busschaert, C. Caltagirone, W. van Rossom and
P. A. Gale, Chem. Rev., 2015, 115, 8038, DOI: 10.1021/acs.
chemrev.5b00099.
3 P. A. Gale, N. C. Busschaert, J. E. Haynes,
L. E. Karagiannidis and I. L. Kirby, Chem. Soc. Rev., 2014,
43, 205, DOI: 10.1039/c3cs60316d.
4 N. H. Evans and P. D. Beer, Angew. Chem., Int. Ed., 2014, 53,
11716, DOI: 10.1002/anie.201309937.
5 J. W. Jones and H. W. Gibson, J. Am. Chem. Soc., 2003, 125,
7001, DOI: 10.1021/ja034442x.
6 F. Huang, J. W. Jones, C. Slebodnick and H. W. Gibson,
J. Am. Chem. Soc., 2003, 125, 14458, DOI: 10.1021/
ja036606f.
7 F. Huang, J. W. Jones and H. W. Gibson, J. Org. Chem.,
2007, 72, 6573, DOI: 10.1021/jo070792g.
8 B. Qiao, A. Sengupta, Y. Liu, K. P. McDonald, M. Pink,
J. R. Anderson, K. Raghavachari and A. H. Flood,
J. Am. Chem. Soc., 2015, 137, 9746, DOI: 10.1021/
jacs.5b05839.
9 S. Roelens, A. Vacca, O. Francesconi and C. Venturi, Chem.
– Eur. J., 2009, 15, 8296, DOI: 10.1002/chem.200900342.
bonding network, found also in a few other obtained struc- 10 S. K. Kim and J. L. Sessler, Acc. Chem. Res., 2014, 47, 2525,
tures. In solution the Job’s plot analyses of L with Na+ and K+
DOI: 10.1021/ar500157a.
confirmed the formation of 1 : 1 and 2 : 1 complexes, 11 A. J. McConnell and P. D. Beer, Angew. Chem., Int. Ed.,
respectively. The 1H NMR titrations performed with mono-
2012, 51, 5052, DOI: 10.1002/anie.201107244.
meric [L·Na]+ and the dimeric [2L·K]+ with chloride, bromide, 12 S. K. Kim and J. L. Sessler, Chem. Soc. Rev., 2010, 39, 3784,
and iodide show that the anion binding affinity of [L·Na]+ and
DOI: 10.1039/c002694h.
[2L·K]+ is clearly higher than with receptor
alone 13 G. J. Kirkovits, J. A. Shriver, P. A. Gale and J. L. Sessler,
L
showing clear positive cooperativity and turn-on effect in
J. Inclusion Phenom. Macrocyclic Chem., 2001, 41, 69, DOI:
anion binding upon cation complexation. Stronger anion
10.1023/A:1014468126351.
binding of [L·Na]+ compared to L alone is explainable by 14 D. M. Rudkevich, J. D. Mercer-Chalmers, W. Verboom,
electrostatic interactions between the cationic receptor
complex and the anion. The even stronger binding of all the
R. Ungaro, F. de Jong and D. N. Reinhoudt, J. Am. Chem.
Soc., 1995, 117, 6124, DOI: 10.1021/ja00127a027.
studied halides with the [2L·K]+ complex is explainable by the 15 P. D. Beer and S. W. Dent, Chem. Commun., 1998, 825, DOI:
formation of an excellent anion binding site upon dimeriza-
tion, having a larger number of urea groups to form more 16 M. J. Deetz, M. Shang and B. D. Smith, J. Am. Chem. Soc.,
hydrogen bonding interactions between the receptors and the 2000, 122, 6201, DOI: 10.1021/ja994487r.
anion, as seen in the solid-state complexes of L with potassium 17 R. Shukla, T. Kida and B. D. Smith, Org. Lett., 2000, 2,
and rubidium halides. Thus, the differences in solution behav- 3099, DOI: 10.1021/ol0063104.
ior between [L·Na]+ and [2L·K]+ is explainable by the structures 18 J. L. Sessler, S. K. Kim, D. E. Gross, C.-H. Lee, J. S. Kim and
10.1039/A800356D.
formed upon cation complexation as also seen in the solid-
state.
V. M. Lynch, J. Am. Chem. Soc., 2008, 130, 13162, DOI:
10.1021/ja804976f.
19 B. Akhuli and P. Ghosh, Chem. Commun., 2015, 51, 16514,
DOI: 10.1039/c5cc07291c.
20 M. P. Wintergerst, T. G. Levitskaia, B. A. Moyer, J. L. Sessler
and L. Delmau, J. Am. Chem. Soc., 2008, 130, 4129, DOI:
10.1021/ja7102179.
Acknowledgements
We thank the Academy of Finland (K. R.: Project no. 263256 21 Z. Sun, F. Pan, Triyanti, M. Albrecht and G. Raabe,
and 265328) and Graduate School of Univ. of Jyväskylä (T.M.)
for financial support. Johanna Lind, Dr Elina Kalenius, and
Eur. J. Org. Chem., 2013, 7922, DOI: 10.1002/
ejoc.201301032.
Esa Haapaniemi, M.Sc. are gratefully acknowledged for their 22 C. J. E. Haynes and P. A. Gale, Chem. Commun., 2011, 47,
help with the MS and NMR experiments.
8203, DOI: 10.1039/c1cc12061a.
This journal is © The Royal Society of Chemistry 2016
Dalton Trans., 2016, 45, 6481–6490 | 6489