10.1016/S0040-4039(00)85262-4
The study presents a novel and selective method for the deoxygenation of phenols through the reduction of aryl triflates. The key chemicals involved are aryl triflates, which are the substrates to be reduced; triethylammonium formate, which acts as the hydrogen donor; and a homogeneous palladium catalyst, typically palladium acetate, which facilitates the reaction. Triethylamine is also used as a base, and phosphine ligands, such as triphenylphosphine or 1,1'-bis(diphenylphosphino)ferrocene (DPPF), are employed to stabilize the palladium catalyst and enhance its activity. The reaction is carried out in DMF solvent, with formic acid added to generate the active hydrogen donor species. The study demonstrates that this method is highly chemoselective, tolerating various functional groups like nitro, ketones, esters, and olefins, and it provides high yields of aromatic hydrocarbons. The mechanism likely involves oxidative addition of the aryl triflate to the palladium catalyst, displacement of the triflate by formate ion, loss of carbon dioxide to form an arylpalladium(II) hydride, and subsequent reductive elimination to yield the aromatic hydrocarbon and regenerate the active palladium species.